
- •3 Статистическая сводка и группировка: понятие, виды, основные приемы проведения.
- •5.1. Понятие и система показателей вариации
- •5.3. Правило сложения дисперсий
- •5.4. Оценка среднего значения и вариации альтернативных признаков
- •6.2. Определение ошибок выборки
- •6.3. Определение численности выборки
- •6.4. Распространение выборочных результатов
- •7.1. Основные понятия корреляционного и регрессионного анализа
- •12. Этапы корреляционно–регрессионного анализа. Расчет параметров уравнения регрессии, их экономический смысл.
- •7.2. Парная корреляция и парная линейная регрессия
- •13. Понятие о множественной регрессии и корреляции. Меры тесноты связей в многофакторной системе.
- •7.5. Множественная корреляция
- •14. Непараметрические методы оценки взаимосвязей.
- •15. Ранговая корреляция, понятие, методы ее измерения.
- •9.3. Общий индекс как средняя величина индивидуальных индексов
- •9.5. Индексы средних величин
- •9.6. Территориальные индексы
- •26 Макроэкономическая статистика: предмет, задачи, основные категории.
- •27. Основные макроэкономические показатели, их взаимосвязь.
- •28. Методы исчисления валового внутреннего продукта.
- •11.3. Методы исчисления валового внутреннего продукта.
- •29. Экономические активы: понятие, состав, направления их статистического изучения.
- •30. Природные ресурсы: проблемы их статистической оценки.
- •31. Статистическое изучение объема, структуры, динамики национального имущества.
- •32. Основные средства и методы их оценки. Балансы основных средств.
- •33. Оборотные средства, методы их статистического изучения.
- •34.Финансовые активы и пассивы, методы их статистического изучения.
- •35.Система показателей банковской статистики.
- •36. Население как объект и субъект экономической деятельности. Показатели численности, состава и движения населения.
- •37. Статистика рынка труда: задачи, система показателей.
- •38. Система показателей уровня жизни населения.
- •39.Индикаторы экономического цикла, их роль в исследовании экономической конъюнктуры и деловой активности.
- •41. Предприятие как хозяйствующий субъект и объект статистики.
- •42.Материально-вещественные и стоимостные показатели результатов производства предприятия.
- •43.Система стоимостных показателей результатов деятельности предприятия.
- •44. Основной капитал предприятия. Классификация, виды оценки, методы переоценки.
- •45. Показатели наличия, состояния и движения основного капитала предприятия.
- •46. Оборотный капитал предприятия, понятие, виды, источники образования.
- •47. Персонал предприятия, его состав, показатели наличия и движения
- •48.Финансовые ресурсы и их роль в деятельности предприятия.
- •49.Показатели эффективности использования отдельных видов ресурсов предприятия.
- •50.Показатели эффективности деятельности предприятия в рыночных условиях.
13. Понятие о множественной регрессии и корреляции. Меры тесноты связей в многофакторной системе.
7.5. Множественная корреляция
Если имеется система статистических показателей: Y, X1, X2, …, Xm, то представляет интерес оценка корреляции между всеми парами показателей этой системы. Все парные коэффициенты корреляции могут быть представлены в одной квадратной матрице R размерностью (m+1)×(m+1), которая называется матрицей парных линейных коэффициентов корреляции. На основе матрицей R, можно определить так называемые коэффициенты множественной линейной корреляции признаков и коэффициенты парной линейной частной корреляции.
Коэффициент множественной линейной корреляции оценивает степень линейной связи одного из признаков системы с совокупностью прочих признаков этой же системы. В общем случае для измерения множественной линейной корреляции определяются параметры множественного уравнения регрессии и теоретические уровни признака-результата (например,Y). На основе фактических и рассчитанных по уравнению (теоретических) значений признака Y вычисляется коэффициент множественной корреляции Ry:
где 2 – общая (фактическая) дисперсия уровней результативного признака (дисперсия Y); σ2факт. – факторная дисперсия или дисперсия теоретических значений признака результата относительно среднего уровня; σ2ост.– остаточная дисперсия, характеризующая вариацию Y за счет факторов, не учтенных уравнением регрессии. Известно, что общая дисперсия признака результата Y складывается из факторной и остаточной составляющих.
Коэффициент множественной
корреляции изменяется от 0 до 1. Чем ближе
RY к 1, тем
более сильная связь между Y
и множеством X. Если коэффициент RY
незначителен по величине (как правило,
RY
0,3),
то можно утверждать, что или не все
важнейшие факторы взаимосвязи учтены,
или выбрана неподходящая форма уравнения.
В последнем случае пересматривается
список переменных модели и возможно,
её вид.
Для нелинейной множественной связи рассчитывают индекс корреляции. Методика его вычисления аналогична, но взаимодействие факторов и функция регрессии рассматриваются как нелинейные. Индекс корреляции изменяется в пределах от 0 до 1. Квадрат R равен так называемому коэффициенту детерминации (D или R2). Он показывает, какая часть вариации зависимого признака объясняется включенными в модель факторов.
Показатели множественной корреляции рассчитываются по приведенной выше схеме не часто. Если признак-результат Y включен в общую систему признаков, то на основе общей матрицы парных линейных коэффициентов R можно получить всю совокупность коэффициентов множественной корреляции, так как любой из признаков этой системы может, в принципе, претендовать на роль признака-результата. Коэффициент множественной корреляции, оценивающий степень линейной зависимости любого признака j от всех прочих в этой системе, определяется по формуле
где (m+1) – число всех признаков в системе; |R| –определитель матрицы R парных линейных коэффициентов корреляции; Rii – алгебраическое дополнение элемента (jj) для этой же матрицы.