Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1 Статистика.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
529.34 Кб
Скачать

12.​ Этапы корреляционно–регрессионного анализа. Расчет параметров уравнения регрессии, их экономический смысл.

Дли изучения взаимосвязи в статистике используются две группы методов, одна из которых включает в себя методы корреляционного анализа, а другая – регрессионный анализ. Иногда эти методы объединяют в один корреляционно-регрессионный анализ (КРА), что имеет под собой определенные основания: наличие целого ряда общих вычислительных процедур,

Задачи собственно корреляционного анализа сводятся к измерению тесноты связи между варьирующими признаками, определению неизвестных причинных связей и оценке факторов, оказывающих наибольшее влияние на вариацию результативного признака. Задачи регрессионного анализа лежат в сфере установления формы зависимости, определения функции регрессии, использования уравнения для оценки неизвестных значений зависимой переменной.

Методы анализа корреляции и регрессии широко представлены в современных системах обработки статистических данных на ПЭВМ (например, STATISTICA, SPSS). Исследователь должен подготовить исходную информацию и быть готовым к интерпретации полученных результатов. В настоящее время вряд ли целесообразно проводить такой сложный вид анализа вручную. Вычислительные процедуры представляют самостоятельный интерес, но знание принципов изучения взаимосвязей, возможностей и ограничений тех или иных методов является обязательным условием исследования.

Методы оценки тесноты связи разделяются на параметрические (корреляционные) и непараметрические. Параметрические методы основаны на использовании оценок параметров распределения вероятностей изучаемых величин: математического ожидания, дисперсии и т.д., и, следовательно, применяются в случаях, когда эти параметры можно предварительно вычислить. На практике в начале исследования обычно считают, что первичные данные подчиняются закону нормального распределения вероятностей.

Непараметрические методы не накладывают ограничений на закон распределения изучаемых величин и обычно более просты в вычислениях. Поэтому их применяют и для оценки корреляционных связей, и особенно широко для оценки связи атрибутивных (качественных) признаков.

7.2. Парная корреляция и парная линейная регрессия

Простейшим приемом выявления связи между двумя признаками является построение корреляционной таблицы. В основу таблицы положена группировка двух изучаемых во взаимосвязи признаков – X и Y. Частоты fij показывают количество соответствующих сочетаний X и Y. Если fij расположены в таблице беспорядочно, можно говорить об отсутствии связи между переменными. В случае образования какого-либо характерного сочетания fij допустимо утверждать о связи между X и Y. При этом, если fij концентрируются около одной из двух диагоналей, имеет место прямая или обратная линейная связь.

Уровни признака

X

Уровни признака Y

Y1

Y2

Ym

Итого

X1

f11

f12

f1m

X2

f21

f22

f2m

Xk

fk1

fk2

fkm

Всего

n

Рисунок 7.1. Схема корреляционной таблицы

Наглядным отображением корреляционной таблицы служит корреляционное поле. Оно представляет график, где на оси абсцисс откладываются значения X, по оси ординат – Y, а точками показывается сочетание первичных наблюдений X и Y. По расположению точек, их концентрации в определенном направлении можно судить о наличии и форме связи.

В итогах корреляционной таблицы по строкам и столбцам приводятся два распределения – одно по X, другое по Y. Рассчитаем для каждого Xi среднее значение Y и для Yj среднее значение X.

; i = 1, 2, …, k ; j = 1, 2, …, m.

Последовательность точек на графике иллюстрирует зависимость среднего значения результативного признака Y от факторного X; соединяя точки линиями, получаем эмпирическую линию регрессии, наглядно показывающую, как изменяется Y по мере изменения X. Аналогичным образом, последовательность точек на графике иллюстрирует зависимость среднего значения факторного признака X от результативного Y; соединяя точки линиями, также получаем эмпирическую линию регрессии, наглядно показывающую, как изменяется X по мере изменения Y. Таким образом, на одном графическом поле можно расположить две линии регрессии