
- •3 Статистическая сводка и группировка: понятие, виды, основные приемы проведения.
- •5.1. Понятие и система показателей вариации
- •5.3. Правило сложения дисперсий
- •5.4. Оценка среднего значения и вариации альтернативных признаков
- •6.2. Определение ошибок выборки
- •6.3. Определение численности выборки
- •6.4. Распространение выборочных результатов
- •7.1. Основные понятия корреляционного и регрессионного анализа
- •12. Этапы корреляционно–регрессионного анализа. Расчет параметров уравнения регрессии, их экономический смысл.
- •7.2. Парная корреляция и парная линейная регрессия
- •13. Понятие о множественной регрессии и корреляции. Меры тесноты связей в многофакторной системе.
- •7.5. Множественная корреляция
- •14. Непараметрические методы оценки взаимосвязей.
- •15. Ранговая корреляция, понятие, методы ее измерения.
- •9.3. Общий индекс как средняя величина индивидуальных индексов
- •9.5. Индексы средних величин
- •9.6. Территориальные индексы
- •26 Макроэкономическая статистика: предмет, задачи, основные категории.
- •27. Основные макроэкономические показатели, их взаимосвязь.
- •28. Методы исчисления валового внутреннего продукта.
- •11.3. Методы исчисления валового внутреннего продукта.
- •29. Экономические активы: понятие, состав, направления их статистического изучения.
- •30. Природные ресурсы: проблемы их статистической оценки.
- •31. Статистическое изучение объема, структуры, динамики национального имущества.
- •32. Основные средства и методы их оценки. Балансы основных средств.
- •33. Оборотные средства, методы их статистического изучения.
- •34.Финансовые активы и пассивы, методы их статистического изучения.
- •35.Система показателей банковской статистики.
- •36. Население как объект и субъект экономической деятельности. Показатели численности, состава и движения населения.
- •37. Статистика рынка труда: задачи, система показателей.
- •38. Система показателей уровня жизни населения.
- •39.Индикаторы экономического цикла, их роль в исследовании экономической конъюнктуры и деловой активности.
- •41. Предприятие как хозяйствующий субъект и объект статистики.
- •42.Материально-вещественные и стоимостные показатели результатов производства предприятия.
- •43.Система стоимостных показателей результатов деятельности предприятия.
- •44. Основной капитал предприятия. Классификация, виды оценки, методы переоценки.
- •45. Показатели наличия, состояния и движения основного капитала предприятия.
- •46. Оборотный капитал предприятия, понятие, виды, источники образования.
- •47. Персонал предприятия, его состав, показатели наличия и движения
- •48.Финансовые ресурсы и их роль в деятельности предприятия.
- •49.Показатели эффективности использования отдельных видов ресурсов предприятия.
- •50.Показатели эффективности деятельности предприятия в рыночных условиях.
5.3. Правило сложения дисперсий
Если первичные данные
по признаку Х разделить на группы,
то дисперсия признака может быть
определена как традиционным способом
по первичным данным, так и как сумма
межгрупповой дисперсии (σ2м.гр.)
и
средней величины дисперсий внутригрупповых
–
,
т.е.
.
Межгрупповая дисперсия оценивает вариацию средних значений в каждой группе относительно общего среднего уровня -
,
где k – количество
групп, на которые разбита вся совокупность;
mi
– количество объектов, наблюдений,
включенных в группу i;
–
среднее значение признака по группе i;
– общее среднее значение признака.
Среднее значение внутригрупповых дисперсий рассчитывается по формуле
Подставляя 2м.гр.
и
в формулу сложения дисперсий, выходим
на расчет дисперсии методом моментов,
что и подтверждает правило сложения.
Свойство сложения дисперсий используется для измерения взаимосвязи признаков X и Y. Так, если в группах, сформированных по уровням или интервалам признака X, определить средние значения для признака Y, то степень связи признака Y и признака X можно оценить эмпирическим коэффициентом детерминации, как отношения межгрупповой дисперсии признака Y к его общей дисперсии –
Величина η носит название эмпирического корреляционного отношения.
5.4. Оценка среднего значения и вариации альтернативных признаков
Под альтернативным признаком понимается такой статистический показатель, который принимает одно из двух взаимоисключающих значений (пол – мужской или женский; изделие – годное или негодное; план по выпуску продукции – выполнен или не выполнен; заказ – выполнен менее чем на 90 % или более чем на 90 % и т.д.). Обычно считают, что если признак Х принял интересующее нас значение, то его величина равна 1, в противном случае Х = 0. В результате в n1 наблюдениях имеем интересующее нас явление (когда Х = 1), а в n2 случаях оно отсутствует (когда Х = 0).
Таким образом,
,
т.е. среднее значение альтернативного показателя равно частоте (точнее, частости) его появления (W = n1/n).
Аналогично
,
т.е. дисперсия альтернативного показателя равна произведению частоты (частости) его появления на частоту (частость) его отсутствия
9. Выборочный метод как основной вид несплошного статистического наблюдения. Виды, методы и способы отбора, обеспечивающие репрезентативность выборки.
Выборочный метод применяется, когда проведение сплошного наблюдения невозможно или экономически нецелесообразно. Так, проверка качества отдельных видов продукции может быть связана с её уничтожением (оценка крепости нити на разрыв, дегустация продуктов питания и т.п.); в других случаях совокупности настолько велики, что физически невозможно собрать данные в отношении каждой из единиц (изучение пассажиропотоков, цен на рынках, исследования бюджетов семей и т.д.). Выборочное наблюдение используют также для проверки результатов сплошного наблюдения.
Единицы, которые отобраны для наблюдения, принято называть выборочной совокупностью, а всю совокупность, из которой производится отбор, – генеральной. Качество выборочного наблюдения зависит от того, насколько выборка репрезентативна (представительна), т.е. насколько состав выборки представляет генеральную совокупность. Для репрезентативности необходимо соблюдение принципа случайности отбора единиц.
Собственно случайный отбор, или случайная выборка, осуществляется с помощью жеребьевки либо по таблице случайных чисел. В первом случае элементам генеральной совокупности присваиваются порядковые номера, которые в виде шаров или карточек-фишек помещаются в ящик, а затем отбираются наудачу. Во втором случае производится выбор случайных чисел (например, из специальных таблиц), по которым образуют порядковые номера объектов (единиц) для отбора. Числа в таблицах случайных обычно печатаются в виде блоков цифр (чтобы сделать таблицы более удобными для чтения). Например, это могут быть числа
5489 5583 3156 0835 1988 3912.
Применение комбинаций этих цифр зависит от размера совокупности: если в совокупности 1000 единиц, то порядковый номер каждой единицы должен состоять из трех цифр от 000 до 999. В таком случае приведенные выше случайные числа дали бы первые 8 номеров единиц выборочной совокупности.
548, 955, 833, 156 ,083 ,519 ,883 ,912.
Несколько сложнее выглядит процедура назначения номеров единиц, отбираемых в выборочную совокупность в общем случае. Теперь из таблицы случайных чисел формируется последовательность случайных величин, равномерно распределенных в интервале от 0 до 1. Могут использоваться и так называемые псевдослучайные числа, т.е. полученные по определенному алгоритму вручную или с помощью ПЭВМ. В нашем примере такими числами можно было бы считать
0,5489; 0,5583; 0,3156; 0,0835; 0,1988; 0,3912 и так далее.
Предположим, что генеральная совокупность состоит из 7328 единиц. Тогда в выборочную совокупность должны войти единицы с номерами.
7328 · 0,5489 = 4022,3 или 4022;
7328 · 0,5583 = 4091,2 или 4091;
7328 · 0,3156 = 2312,7 или 2313;
7328 · 0,0835 = 611,9 или 612;
7328 · 0,1988 = 1456,8 или 1457;
7328 · 0,3912 = 2866,7 или 2867.
Формирование случайных чисел и определение очередного номера продолжается, пока не будет получен заданный объем совокупности в выборке
Механический отбор. На практике очень часто применяют механическое формирование выборочной совокупности, не связанное с процедурами получения случайных чисел. При этом способе отбирается каждый (n/N)-й элемент генеральной совокупности. Например, если имеется совокупность из 100 тыс. единиц, и требуется выборка в 1000, то в нее попадёт каждый сотый элемент. Если единицы в совокупности не ранжированы относительно изучаемого признака, то первый элемент выбирается наугад, произвольно, а если ранжированы, то из середины первой сотни. Этот способ отбора близок к собственно случайному, при условии, что список не составлен таким образом, что какие-то единицы совокупности имеют преимущества попадания в выборку. Так, использование 25 % механической выборки при обследовании городского населения может привести к тому, что для каждого этажа при 4-квартирных площадках будет выбран один и тот же тип квартир (например, только трехкомнатные).
Стратифицированный отбор. Используется для отбора единиц из неоднородной совокупности. В этом случае генеральную совокупность предварительно разбивают на однородные группы с помощью типологической группировки, затем производят отбор единиц из каждой группы случайным или механическим способом так, чтобы единицы разных групп (слоев) включались в выборку пропорционально численности групп в генеральной совокупности или пропорционально удельному весу групп в общей дисперсии.
Серийный (гнездовой) отбор. Это такая форма отбора, при которой в случайном или механическом порядке выбирают не единицы, а определенные районы, серии (гнезда), внутри которых производится сплошное наблюдение.
Особенности обследуемых объектов определяют две методики отбора единиц – повторная и бесповторная. При повторном отборе каждая попавшая в выборку единица или серия возвращается в генеральную совокупность и может попасть в выборку вторично. При этом вероятность попадания в выборочную совокупность всех единиц генеральной совокупности остается одинаковой. Бесповторный отбор означает, что каждая отобранная единица (или серия) в генеральную совокупность не возвращается, т.е. не может подвергнуться вторичной регистрации; поэтому для остальных единиц вероятность попасть в выборку увеличивается. Бесповторный отбор дает, следовательно, более точные результаты по сравнению с повторным и более желателен в статистической практике. Только в тех случаях, когда бесповторный отбор провести нельзя, используется повторная выборка (при обследовании потребительского спроса, пассажирооборота и т.п.).
10. Ошибки выборочного наблюдения, понятие, виды, способы расчета. Распространение данных выборочного наблюдения на генеральную совокупность