
- •1.Генетика- предмет, объект. Методы генетических исследований.
- •2.Роль ядра в передаче наследственной информации
- •3.Кариотип и его видовые особенности
- •4.Митоз, его биологическое значение. Схема митоза.
- •5. Мейоз, его генетическое значение. Схема
- •6. Оогенез (схема) 7. Сперматогенез
- •8.Особенности гибридологического метода Менделя. Виды скрещиваний: реципрокное, возвратное, анализирующее. Схемы скрещиваний. Генотип ,фенотип, символика
- •9 Законы Менделя правило чистоты гамет.
- •10 Аллели , множественный аллелизм
- •11. Взаимодействие аллельных генов. Летальные гены
- •12. Учет врожденных болезней и аномалий. Методы генетического анализа
- •13. Взаимодействие неаллельных генов. Схемы скрещиваний
- •14. Гены-модификаторы, экспрессивность, пенетрантность, плейотропия.
- •15. Сцепленное наследование признаков (полное и неполное). Определение расстояния между генами.
- •16.Соматический (митотический) кроссинговер и факторы, влияющие на кроссинговер. Сущность хромосомной теории наследственности.
- •17. Карты хромосом и метод их построения
- •18. Хромосомное определение пола. Нарушения в развитии пола(интерсексуальность у животных, синдром Клайнфельтера, синдром Тернера, фримартинизм)
- •1 Хромосомное определение пола.
- •19. Наследование признаков сцепленных с полом. Практическое использование сцепленного с полом наследования признаков.
- •20. Бисексуальность организмов. Наследование признаков ограниченных полом.
- •21.Проблема регуляции пола
- •22.Доказательства роли днк в наследственности. Биологическая роль нуклеиновых кислот.
- •23. Строение днк. Ее роль в жизнедеятельности клетки, репликация днк
- •24.Виды рнк, их функции, строение. Генетический код и его свойства
- •25. Синтез белка в клетке
- •26. Строение и размножение бактерий
- •27. Строение и размножение вирусов. Взаимодействие фага с бактериальной клеткой.
- •28. Конъюгация у бактерий
- •29. Трансдукция у бактерий
- •30. Трансформация у бактерий
- •31. Генная инженерия и задачи, которые она решает.
- •32. Клеточная инженерия. Соматическая гибридизация.
- •33. Эмбриогенетическая инженерия. Клонирование эмбрионов млекопитающих.
- •34. Химерные животные. Трансгенные животные.
- •35. Виды изменчивости
- •36. Вариационный ряд и его построение.
- •37. Перечислить основные статистические параметры, характеризующие совокупность и что они показывают
- •38. Ошибки репрезентативности и их применение в биометрии.
- •39. Определение достоверности разности между средними арифметическими двух выборочных совокупностей.
- •40. Коэффициенты корреляции и регрессии
- •41 Вопрос
- •42 Вопрос
- •43 Вопрос
- •44 Вопрос
- •45 Вопрос
- •46 Вопрос
- •47 Вопрос
- •48 Вопрос
- •49 Вопрос
- •50 Вопрос
- •51 Вопрос
- •52 Вопрос
- •53 Вопрос
- •54 Вопрос
- •55 Вопрос
- •56 Вопрос
- •57 Вопрос
- •58 Вопрос
- •59 Вопрос
- •60 Вопрос
- •61 Вопрос
- •62 Вопрос
- •63 Вопрос
- •64 Вопрос
- •65 Вопрос
- •66 Вопрос
27. Строение и размножение вирусов. Взаимодействие фага с бактериальной клеткой.
Вирусы – неклеточные формы жизни. Частицы вирусов (от 20 до 450 нм). они имеют палочковидную, шарообразщую, многогранную форму. Вирусная частица содержит одну из нуклеиновых кислот, которая окружена белковой оболочкой (капсидом). Вирусы репродуцируются только внутри клетки какого-то организма и используют для этого ее ферментные системы и другие необходимые компоненты. Круг хозяев для определенного вируса может быть ограничен. Вирусы могут инфицировать одноклеточные микроорганизмы — микоплазмы, бактерии и водоросли, а также клетки высших растений и животных. Бактериофаги- вирусы, паразитирующие в бактериях. Всюду, где размножаются бактерии, обнаруживаются и паразитирующие в них фаги. Они находятся в кишечнике человека и животных, в сточных водах, почве. Разные фаги имеют различную форму частиц. В головке плотно упакована ДНК, окруженная белковой оболочкой. Хвостовой отросток состоит из полого стержня диаметром около 2,5 нм, окруженного чехлом, способным к сокращению. Один Конец стержня прикреплен к головке, другой — к шестиугольной базальной пластинке, от которой отходят короткие зубцы с Длинными нитями на концах. Размер фага с конца хвостового отростка до вершины головки равен около 200 нм, ширина головки 50—60 нм. К клеточной стенке бактерий фаги прикрепляются концевыми нитями отростков. Затем оболочка бактерии растворяется с помощью фермента лизоцима, белковый чехол хвостового отростка сокращается и через канал хвостового отростка нуклеиновая кислота вводится в цитоплазму клетки. После проникновения нуклеиновой кислоты внутрь клетки бактерии следует фаза смены информации. В этот период фаговые частицы не обнаруживаются, однако в клетке развиваются процессы, обусловленные фаговым геномом. Начинается синтез иРНК и ранних белков, необходимых для синтеза ДНК фага и других структурных компонентов зрелого фага. Синтез ДНК фага осуществляется с помощью клеточной ДНК-полимеразы и сопровождается полным распадом ДНК бактерии. ДНК фага можно обнаружить в клетке через 8—9 мин после заражения. С 9-й минуты начинают синтезироваться специфичные фаговые белки. На последнем этапе взаимодействия фага с бактерией происходит самосборка фаговых частиц, которая состоит в необратимом объединении фаговой ДНК и сформировавшейся белковой оболочки. После этого зрелые фаги выходят в окружающую среду. Полный цикл развития фага составляет 30— 90 мин. За этот период образуется 200 и более фаговых частиц, которые способны заражать новые клетки. По характеру взаимодействия с клеткой бактерии бактериофаги делятся на вирулентные и умеренные. Вирулентные фаги всегда лизируют клетку бактерии. Умеренные фаги могут вызвать лизис клетки бактерии, но могут перейти и в неинфекционную форму. В этом случае молекула ДНК фага прикрепляется к ДНК бактерии и передается с нею дочерним клеткам. Фаг, существующий в такой форме, называется профагом.
28. Конъюгация у бактерий
Конъюгация — перенос генетического материала от одной бактериальной клетки (донора) к другой (реципиенту) при их непосредственном контакте.
Неравноценная роль родительских штаммов при конъюгации: один штамм является донором (мужским), другой — реципиентом (женским). Клетки-доноры обладают половым фактором F. Он является конъюгативной плазмидой и представляет собой циркулярно замкнутую молекулу ДНК. Половой фактор F автономно существует в цитоплазме.Половой фактор F обладает способностью включаться в геном бактерии и тогда из цитоплазматической структуры превращается в фрагмент хромосомы. Клетки, в которых возникает этот процесс, образуют штамм.
Так как фактор F у разных штаммов включается в хромосому и разрывает ее в разных местах, переход хромосом в реципиентную клетку начинается с разных участков. Для переноса всей цепи ДНК в клетку реципиента требуется при 37 °С .100 мин, но конъюгационный мостик очень хрупкий, легко разрывается, и, как правило, вся цепь не успевает перейти. Поэтому более высокой частотой передаются гены, расположенные около начальной точки хромосомы донора. Затем ДНК донора в гомологичных участках вступает в контакт с ДНК реципиента, и в результате кроссинговера некоторые участки одной цепи ДНК реципиента заменяются фрагментами ДНК донора.