
- •Механические колебания: гармаонические, затухающие.
- •Вынужденные колебания. Резонанс. Автоколебания.
- •4. Сложение колебаний, направленных вдоль одной прямой и во взаимно перпендикулярных направлениях.
- •5. Сложные колебания. Гармонический спектр сложных колебаний, теорема Фурье. Разложение колебаний в гармонический спектр.
- •7. Уравнение волны. Энергетические хар-ки волны.
- •8. Излучатели и приемники уз.
- •10. .Взаимодействие уз с вещ: деформация, кавитация, выделение тепла, хим. Р-ции.
- •15. Характеристики слухового ощущения и их связь с физическими характеристиками звука. Закон Вебера-Фехнера. Уровни интенсивности, уровни громкости звука и единицы их измерения.
- •16. Аудиометрия и фонокардиография.
- •17. Физические основы работы аппарата восприятия звука.
- •18. Поглощение и отражение звуковых волн, акустический импеданс. Реверберация
- •19.(Дописать от руки) Основные понятия гидродинамики. Условие неразрывности струи. Уравнение Бернулли.
- •20. Вязкость жидкости. Уравнение Ньютона. Единицы вязкости. Кровь как неньютоновская жидкость. Феномен Фареуса-Линдквиста. Факторы, влияющие на вязкость крови в живом организме.
- •23. Методы измерения вязкости жидкостей, определение вязкости крови.
- •48. Организм как открытая система. Теорема Пригожина.
- •61. Электрическое поле и его характеристики
- •62. Электрический диполь. Поле диполя. Диполь в электрическом поле.
- •63.. Понятие о мультиполе. Волокно миокарда как диполь.
- •27. Дипольный эквивалентный эл-кий генератор сердца.
- •65. Физические основы электро- и векторкардиографии. Теория Эйнтховена.
- •66. Аппараты для электрокардиографии.
- •67. Переменный ток и его физические хар-ки.
- •68. Цепь тока с активным сопротивлением.
- •69. Цепь с индуктивным сопротивлением.
- •70. Цепь с емкостным сопротивлением.
- •72. Электропроводность электролитов
- •74. Электропроводность биотканей для переменного . Зав-сть импеданса от частоты тока.
- •75. Реография как диагностический метод
- •76. Оценка жизнеспособности тканей путем измерения импеданса ткани при различных частотах переменного тока.
- •77. Основы импедансной плетизмографии.
- •79. Электровозбудимость тканей.Реобаза.Хронаксия.
- •80. Генератор импульса(релаксационного колебания) и их практическое применение.
- •82. Дифференцирующая цепь.
- •83. Интегрирующая цепь.
- •84. . Электронные стимулятоы. Низкочаст. Физиотерапевт. Аппаратура.
- •85. Генераторы гармонических колебаний на транзисторе
- •86. Схема аппарата увч-терапии.Терапевтический контур.
- •91. . Общая схема съема, передачи и регистр. Мед –биол. Информации
- •92. . Электроды для съема сигнала.
- •94. Пьезоэлектрический эффект и его применение
- •95. . Биоуправляемые и энергетические датчики и их характеристики.
- •96. .Датчики температуры тела
- •98. Датчики параметров сердечно - сосуд. Системы.
- •100. Принцип работы мед. Приборов, регистр. Биопо-тенциалы.
- •101. Амплитудная характеристика усилителя. Амплитудные искажения и их предупреждение.
- •102. 65. Частотная хар-ка ус-теля. Линейные искажения.
- •108. Явление полного внутреннего отражения. Волоконная оптика
- •109. Линзы. Аберрация линз
- •110. Оптическая система глаза
- •112. . Увеличение и предел разрешения оптических микроскопов. Формула Аббе.
- •113. Специальные приемы оптической микроскопии
- •114. Общие свойства электромагнитных волн
- •116. Дифракция. Принцип Гюйгенса-Френеля
- •117. Интерференционные и дифрационные приборы
- •151. Закон ослабления потока рентгеновских лучей
- •152. Физические основы применения рентгеновского излучения в медицине
- •153. 153,155 Защита от ионизирующего излучения(ии)
- •3 Вида защиты: защита временем, расстоянием и материалом.
- •154. Основы рентгеновской компьютерной томографии(кт)
- •156. Радиоактивность(р).Виды распада.
74. Электропроводность биотканей для переменного . Зав-сть импеданса от частоты тока.
При пропускании переменного электрического тока через биологические объекты в них возникают поляризационные процессы. Установлено, что при этом происходит изменение как активной, так и реактивной его составляющих импеданса. При исследовании электрических характеристик живых тканей в широком диапазоне частот переменного тока проявляется эффект дисперсии - модуль импеданса биологических объектов с увеличением частоты уменьшается до некоторой постоянной величины.
В
этом случае сила тока, проходящая
через биологическую
ткань,
опережает по фазе приложенное
напряжение. Следовательно
емкостное
сопротивление тканей больше индуктивного.
Именно
такое сочетание резисторов и конденсатора
может быть принято за эквивалентную
электрическую схему тканей организма.
Частотная зависимость импеданса
эквивалентно
й
электрической схемы соответствует
общему ходу экспериментальной зависимости
импеданса от частоты. Важно отметить,
что при этом электроемкость и,
следовательно, диэлектрическая
проницаемость остаются постоянными
Приблизить свойства схемы к живой ткани позволяет электрическая схема, состоящая из нескольких элементов, соединенных последовательно и параллельно (рис. 5а). Зависимость модуля импеданса Z от частоты для данной схемы представлена на рис.23.5б.
75. Реография как диагностический метод
Реография – метод исследования кровенаполнения органов и тканей или отдельных участков тела на основе регистрации их сопротивления переменному току высокой частоты.
Одна из причин изменения электрического сопротивления живых тканей – колебания их кровенаполнения. Использование высокочастотных токов необходимо для сведения к минимуму явлений поляризации в системе «электрод – кожа».
При применяемых в реографии частотах имеет место преимущественно ионная проводимость, так как проводниками служат жидкие среды организма, являющиеся слабыми электролитами. Ток при этом распространяется в основном по магистральным сосудам.
Реограф – электронное устройство, предназначенное для преобразования колебаний импеданса живой ткани или его составляющих, обусловленных пульсовыми изменениями кровенаполнения в пропорциональный электрический сигнал.
Принцип работы реографа заключается в следующем: от генератора высокой частоты реографа с помощью электродов через исследуемый орган пропускается ток высокой частоты. При этом на исследуемом участке (органе) возникает падение напряжения. Изменения кровенаполнения в исследуемом органе приводят к изменениям его импеданса и пропорциональным изменениям амплитуды высокочастотного напряжения. После усиления с помощью детектора и фильтров выделяется низкочастотная составляющая, представляющая собой реографический сигнал (реограмму) – Используется переменный ток с частотами 30-300 кГц, величина тока составляет 1-5 мА. Реоэнцефалография - метод исследования мозгового кровообращения, основанный на измерении и записи пульсовых колебаний полного электрического сопротивления (импеданса) головного мозга при пропускании через него тока высокой частоты, слабого по силе и напряжению.