Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
termekh.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
2.94 Mб
Скачать

10. Плоскопараллельное движение твердого тела

 Плоскопараллельным (плоским) движением (ППД) твердого тела называется такое движение, при котором все точки тела перемещаются в плоскостях параллельных некоторой неподвижной плоскости (рисунок 2.11). 

    При таком движении точки, лежащие в разных плоскостях на одном отрезке, перпендикулярном неподвижной плоскости (например M1M2 ) совершают одинаковые движения.

Отрезок M1M2  движется поступательно. Поэтому изучение плоскопараллельного движения сводится к изучению движения плоской фигуры в какой-то плоскости.

    На рисунке 2.12 показано перемещение пластинки в плоской системе отсчета xOy  из одного положения в другое. Такое перемещение можно осуществить двигая пластину поступательно с траекторией точки A  с последующим поворотом на угол φ  вокруг точки A1. Это же перемещение можно выполнить иначе. 

    Например, перемещая пластинку поступательно с траекторией точки B , с последующим поворотом вокруг B1  на угол φ. Траектории точек A  и B различны, а угол поворота в обоих случаях  одинаков. 

     Положение пластинки вполне определяется положением скрепленного с ней отрезка (например AB), закон движения которого можно задать в виде:

                                 xA=xA(t),  yA=yA(t),  φ=φ(t).

    Точка A  в этом случае называется полюсом. Если принять за полюс точку B , то получим уравнения:

                                xB=xB(t),  yB=yB(t),  φ=φ(t)

    За полюс выбирается точка, закон движения которой известен.

11: Теорема о скоростях точек плоской фигуры. Мгновенный центр скоростей и его определение. Частные случаи определения положения мгновенного центра скоростей

1)Скорость любой точки плоской фигуры равна геометрической сумме скорости выбранного полюса и скорости точки во вращательном движении фигуры вокруг полюса. Производная от вектора AM, постоянного по величине и переменного по направлению, численно равна скорости  точки  М     при    вращении   ее вокруг точки А. Вектор V(MA)= ω⋅AM перпендикулярен отрезку АМ. Численную величину скорости точки М можно получить, если воспользоваться теоремой косинусов

Численную величину скорости точки М можно получить, если воспользоваться теоремой косинусов

или спроецировать векторное равенство (1) на выбранные оси координат:

2) Мгновенным центром скоростей называется точка плоской фигуры, скорость которой в данный момент времени равна нулю. Теорема. В каждый момент времени при плоском движении фигуры в ее плоскости при ω=0 (непоступательное движение), имеется один единственный центр скоростей.

, , , следовательно

.

Мгновенный центр скоростей находится на перпендикуляре к скорости , проведенном из точки О, на расстоянии .

Мгновенный центр скоростей это единственная точка плоской фигуры для данного момента времени. В другой момент времени мгновенным центром скоростей будет уже другая точка.

Возьмем точку Р за полюс

Так как , то . Аналогичный результат получается для любой другой точки плоской фигуры.

.

.

Скорости точек плоской фигуры определяются в данный момент так, как если бы движение фигуры было вращением вокруг мгновенного центра скоростей.

Скорости точек плоской фигуры пропорциональны их расстояниям до мгновенного центра скоростей.

1. СV совпадает с точкой В  VB=0. Шатун АВ вращается вокруг точки В  

2.  

3. МЦС лежит в «бесконечности» 

 

4.  

здесь VII VA

В этом случае МЦС находится в “бесконечности” , т.е

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]