Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ТКМ реферат.docx
Скачиваний:
0
Добавлен:
02.02.2020
Размер:
4.93 Mб
Скачать
    1. Лучевые методы обработки.

Эти методы обработки основаны на использовании энергии направленного пучка ускоренных электронов (электроннолучевая обработка) или мощного светового луча (светолучевая обработка).

используются для обработки как металлических, так и неметаллических материалов с любыми физикомеханическимй свойствами и позволяют получать весьма малые отверстия, пазы и щели, разрезать заготовки, вырезать детали любой конфигурации. Лучевыми методами сваривают и плавят металлы.

Установка для электроннолучевой обработки 111, а) состоит из электроннолучевой трубки (электронная пушка) и рабочей камеры, где создается вакуум и куда помещается обрабатываемая заготовка.

Электронная пушка является источником электронного луча—сфокусированного пучка электронов. Разогретый катод благодаря эмиссии создает поток электронов. Вследствие разности потенциалов между катодом и анодом 3 пучок электронов приобретает скорость до десятков и сотен километров в секунду и фокусирующим наконечником 2 и электромагнитной катушкой 4 формируется в узкий луч диаметром от миллиметра до нескольких микрон. При попадании на изделие 5 он резко тормозится. В результате кинетическая энергия движущегося пучка электронов превращается в тепловую. Поскольку электронный луч обладает очень большой концентрацией энергии, в точке соприкосновения его с заготовкой выделяется значительное количество тепла (температура повышается до 6000°С), что приводят к плавлению и даже испарению любых материалов. Перемещая электронный луч по поверхности заготовки, можно вести обработку па заданному профилю.

Светолучевая обработка Ill,б) выполняется при помощи светового луча, излучаемого оптическим квантовым генератором (лазером). В кристаллическом оптическом квантовом генераторе стержень t из монокристалла рубина (окиси алюминия с примесью хрома) с отполированными и посеребренными торцами окружен спиральной ксеноноаой лампой , располагающейся в цилиндрическом корпусе 3. При разрядке конденсатора 7, питающегося от источника электрического тока б,

лампа периодически вспыхивает. В момент вспышки атомы хрома в кристаллах рубина переходят в возбужденное состояние и после прекращения вспышки излучают избыточную энергию. Энергия в виде фотонов, направленных вдоль оси стержня, вызывает в нем цепную реакцию. Возникающий поток фотонов многократно отражается от торцов— непрозрачного А и полупрозрачного 5, лавинообразно нарастает и вырывается из торца Б в форме мощного светового луча. Линза 4 фокусирует его на поверхность обрабатываемой заготовки 5, на площадь диаметром до 0,01 мм.

Обладая очень большой энергией, сконцентрированной на очень малой площади, световой луч создает температуру до нескольких тысяч градусов. Материал детали плавится и частично испаряется. Обработка ведется на воздухе и продолжается доли секунды.

6. Методы шлифования и отделочной методы обработки заготовок.

6.1 Шлифование.

Шлифование- это процесс резания материалов с помощъю абразивного материала, режущими элементами которого являются абразивные зерна. Шлифование применяется как для черновой так и для чистовой и отделочной обработки.

При шлифовании главным движением является вращение режущего инструмента с очень большой скоростью. Чаще всего в качестве шлифовального инструмента пользуются шлифовальные круги.Абразивные зерна расположены в круге беспорядочно и удерживаются связующим материалом. Каждое абразивное зерно работает как зуб фрезы, снимая стружку.

Процесс резания при шлифовании имеет значительное отличие по сравнению с работай лезвийногоинструмента. При вращательном движении круга, в зоне его контакта с заготовкой часть зерен срезает материал в виде очень большого числа тонких стружек (до 100 000 000 в минуту). Шлифовальные круги срезают стружки на очень больших скоростях- от 30 м/c и выше (порядка 125 м/c). Процесс резания каждым зерном осуществляется почти мгновенно. Обработанная поверхность предстовляет собой совокупность микроследов абразивных зерен и имеет малую шероховатость. Часть зерен ориентирована так, что не может резать обрабатываемую поверхность.

Такие зерна производят работу трения по поверхности резания. Абразивные зерна могут также оказывать на заготовку существенное силовое воздействие. Происходит поверхностное пластическое деформирование материала, искажение его кристалической решетки. Деформирующая сила вызывает сдвиг одного слоя атомов относительно другого. Вследствии упругопластического деформирования матриала обработаная поверхность упрочняется. Но этот эффект оказывается менее ощутимым, чем при обработке металлическим инструментом.

Шлифование применяют в основном для заготовок из заколенных сталей. С развитием малоотходных технологий доля обработки металлическим инструментом будет уменьшаться, а абразивным увеличиваться.

ИНСТРУМЕНТ

В промышленности находят применение как естественные, так и искуственные абразивные материалы.

К естественным абразивным материалам относятся алмаз, корунд, наждак и некоторые другие. Однако ввиду того, что свойства этих материалов нестабильны, а запасы их ограничины, основное применение в промышленности получили искуственные материалы. К искуственным абразивным материалам относятся электрокорунд, корборунд, карбид бора, синтетические алмазы и сверхтвердые материалы, полученые на основе кубического нитрида бора.

Электрокорунд представляет собой кристалический оксид флюминия Al2O3. D зависимости от содержания оксида алюминия различают три типа электрокорунда: нормальный электрокорунд (Э), содержащий до 95% Al2O3, электрокорунд белый (ЭБ), содержащий 95-98% Al2O3 , режущая способность которого значительно выше (на 30-40%), и монокорунд, содержащий 98-99% Al2O3. Чем выше содержание кристалического оксида алюминия в электрокорунде, тем выше его режущие свойства. Электрокорунд применяется для шлифования сталей, чугунов и цветных металлов. Абразивные материалы из монокорунда предназначены для получитового и чистового шлифования деталей из цементированых, закаленных и высоколегированых сталей. Карбтд кремния (карборунд SiC) по сравнению с электрокорундом обладает большей твердостью, но и хрупкостью. При дроблении его зерна имеют более острые кромки, что обеспечиват повышеную производительность обработки.

Карбид кремния выпускают двух марок. Карбид кремния черный (КЧ) содержит 95-97% SiC и применяется для обработки хрупких металлических материалов, цветных металлов и неметаллов. Карбид кремния, содержащий не менее 97% SiC, имеет зеленый цвет (КЗ) и обладает более высокими свойствами. Он премущественно используется для заточки твердосплавного режущего инструмента.

Карбид бора (B4C) отличается черезвычайно высокой прочностью, но очень хрупок и дорог. Используется в основном в виде несвязанных образивных зерен для доводки твердосплавного режущего инструмента, притирки, резки драгоценных камней и т.д..

Синтетические алмазы (СА) получают из графита (99,7%С и 0,3%примеси) в специальных камерахпри давлениии около 1,3 ГПа в присутствии катализатора и температурах 1200-2400 С. В зависимости от температуры получается различная форма кристаллов и окраска от чер ного цвета при низких температурах до светлого при высоких.

Синтетические алмазы имеют брльшую остратут режущих кромок по сравнению с естественными и потому более производительны в качестве образивного инструмента. Алмаз имеет черезвычайно высокие режущие свойства, так как он является самым твердым веществом, обладает очень высокой теплопроводностью и износостойкостью, имеет малый коэффициент трения по металлу. Однако он недостаточно теплостоек (до 800С), что позволяет его использовать в соновном для обработки хрупких материалов, цветных металлов и неметаллов.

Кубический нитрид бора (КНБ)- эльбор, боразон и другие- синтетический сверхтвердый материал близок по твердости к алмазам, но имеет теплостойкость почти вдвое более высокую (до 1500С). Высокая теплостойкостьи малое химическое сродство с железом позволяет успешно использовать его для обработкивысокопрочных и закаленных сталей и сплавов на основе железа.

Зерна абразивных материалов являются режущими элементами абразивных инструментов.Основным видом абразиных инструментов являются шлифовальные круги, форма и размер которых определяет ГОСТ 2424-60, который предусматривает 22 пофиля с диаметрами от 3 до 1100 мм. Среди них наиболее часто применяются следующие формы: плоские прямые (ПП), плоские с выточкой (ПВ), чашечные цилиндрические (ЧЦ) и конические (ЧК), кольца (1К), тарельчатые (2Т) и т.д..

Все большее применение находит обработка с применением образивной ленты. Этот метод применяется для черновой, читовой и отделочной обработки и во многих случаях обеспечивает значительное повышение производительности труда.

Свойстваабразивных инструментов и их работоспособность будут определяться маркой абразивного материала, а также характеристиками инструмента: зернистостью абразива, видом связки, твердостью и структурой. По размеру абразивные зерна подразделяются на 26 номеров зернистости и делятся на шлифзерна(номера зернистости 200-16), шлифпорошки (номера 12-3) и микропорошки (номера М40-М5). Номер шлифзерна и шлифпорошка соответствуют размеру зерен в сотых долях миллиметра, а номер микропорошков показывает размер зерна в микрометрах.

Выбор зернистости абразивного инструмента определяется величиной припуска на обработку, чистотой обработанной поверхности и точностью обработки. Для грубой предварительной обработки и обработки вязких материалов рекомендуется крупнозернистые инструменты, обеспечивающие высокую производительность, но низкое качество. Отделочные работы производятся мелкозернистыми кругами.

Для соединения абразивных зерен в абразивный инстрмент служит связка. Связки подразделяют на органические и неорганически. Из неорганических связок наиболее часто применяются керамические (К) и силикатные (С).

Керамическая связка состоит из огнеупорной глины,полевого шпата, талька и жидкого стекла. Благодоря высокой прочности, водостойкости и жаропрочности она является самой распрастраненной. Недостатком керамической связки является значительная хрупкость.

Силикатная связка представляет собой жидкое стекло и имеет небольшую прочность. Круги на силикатной связке предназначены для обработки деталей в тех случаях, когда не допускается повышение температуры и нельзя применять смазочно-охлаждающие жидкости.

К органичиским связкам относятся вулканитовая (В) и бакелитовая (Б). Вулканитовая связка состоит из 70% каучука и 30% серы. Абразивные инструменты на такой связке обладают большой прочностью, но имеют малую теплостойкость. Связка применяется для узких фасонных кругов. Бакелитовая связка представляет собой синтетическую смолу. Круги, изготовленные на этой связке, прочны, эластичны, допускают большие окружные скорости, но могут применяться при температуре не выше 180С.

Алмазные круги состоят из стального, алюминиевого или пластмассового кольца (основания) и закрепленного на нем алмазного слоя толщиной 1,5-5,0 мм.

Абразивные инструмент должен обладать определенной твердостью. Под твердостью понимается способность связки удерживать абразивные зерна. В соответствии с этим разработана шкала твердости, согласно которой все аразивные делятся на 16 степеней твердости. Для каждого конкретного случая обработки необходимо подбирать инструмент определенной твердости. В круге повышенной твердости при работе продолжают удерживаться притупившиеся зерна, что приводит к повышению температуры в зоне резания и прижогу обрабатываемой поверхности. Такой круг требует частичной правки для восстановления режущей способности. Слишком мягкий круг будет сильно изнашиваться, при этом будут выкрашиваться зерна, не потерявшие еще своей остраты.

При подборе круга для данных условий обработки стремятся добиться "самозатачива-

ния". В этом случае своевременно будут выкрашиваться затупившиеся зерна и открываться новые, острые.

В любом абразивном инструменте наряду с абразивными зернами и связкой имеются поры(пустоты), способствующие его охлаждению в процессе работы. Структура абразивного инструмента определяется количественным соотношением в нем зерен, связки и пор. Имеется 13 номеров структур. Чем больше номер структуры, тем меньше в единице объема зерен и больше пор.

Характеристики образивных кругов маркируются на нерабочей поверхности круга, где приводятся их условные обозначения: вид образивного материала, зернистость, форма, размер и допустимая максимальная скорость вращения.

В процессе работы щлифовального круга абразивные зерна изнашиваются и теряют режущую способность, а круг засаливается продуктами обработки. Для восстановления режущих свойств и геометрической формы производится переодическая првка круга. Наиболее качественная правка производиться алмазными инструментами.

Более грубая правка осуществляется шарошками, оснащенными монолитными твердосплавными дисками, металлическими дисками и звездочками из износосойких сталей или правочными кругами из карбида кремния, термокорунда т.д.

Виды шлифования

В промышленности часто применяются следующие виды шлифования:

Обдирочное шлифование - снятие больших припусков крупнозернистыми кругами прямого профиля типа ПП, реже ПВ, ПР и ПН, а так же чашечными кругами типа ЧК;

Отрезка (разрезка, резка) - разрезание материала абразивными кругами. Абразивная резка является в настоящее время самым производительным видом среди других видов резания;

Круглое шлифование - процесс шлифования детали во время ее вращения в центрах или в патроне, кругами типа кругов ПП, ПВ, ПВК и ПВДК;

Бесцентровое шлифование - отличается от центрового тем, что обрабатываемые детали получают вращение и шлифуются без крепления в центрах, причем базой является обрабатываемая поверхность. При круглом бесцентровом шлифовании оба круга вращаются в одну сторону с разными скоростями, рабочий круг - со скоростью 30-35 м/с, ведущий - со скоростью, в 60-100 раз меньшей. Опорой для шлифуемой детали является нож со скошенным краем, находящийся между рабочим и ведущими кругами. Нож устанавливается так, чтобы центр детали находился выше или ниже центров кругов. Типы используемых кругов - ПП и ПВД;

В нутреннее шлифование - шлифование отверстий цилиндрической и конической формы. В зависимости от конструкции детали и станка шлифование осуществляется при вращении детали или при неподвижном состоянии. Шлифовальный круг при обработке вращается не только вокруг своей оси со скоростью 20-35 м/с, но и вокруг оси обрабатываемого отверстия с круговой подачей 20-30 м/мин. Типы абразивного инструмента - ПП и ПВ;

Плоское шлифование - шлифование плоскостей осуществляется периферией или торцом круга, используются круги типа ПП, ПВ, ПВД, 1К, ЧК, ЧЦ и ПН, сегменты СП, 1C, 2С, ЗС, 4С, 5С, 6С и 8С;

З аточка и доводка режущего инструмента - от заточки и доводки режущих инструментов зависят производительность и стоимость обработки деталей, стойкость и расход инструментов. В операции заточки и доводки используются самые разнообразные типы абразивного инструмента. Более подробно это будет освещено в следующих главах, посвященных выбору инструмента. Здесь же просто укажем перечень типов: ПП, ПВ. ЧЦ, ЧК, ЛЧК, Л24К, ЛТ, Л1Т, ЛЗТ, Л5Т, Л2П, ЛЗП, ЛПВ, АПП, АПВ, А1ПВ, АПВД, АЧК, AT, A1T, А2Т, АЧТ, АФК, КС, С;

Резьбошлифование - шлифование резьбы различных профилей (треугольные, трапециевидные и др.) и шага метчиков, резьбовых калибров, накатных роликов, ходовых винтов металлорежущих станков и измерительных приборов. Используются круги типа ПП и 2П;

Зубошлифование - шлифование зубчатых колес всех видов. Типы кругов -ПП, 2П, ЗТ и 4П;

Шлицешлифование - шлифование шлицев различного профиля: прямоугольных, эвольвентных, трапециевидных и треугольных. Типы - ПП, 1Т, необходимый профиль придается кругу непосредственно на станке;

Хонингование - процесс доводки абразивными брусками отверстий с шероховатостью 0,3-0,080 и точности до второго класса. Типы брусков - БК, БХ;

Суперфиниширование - шлифование при малом съеме металла (10-12 мкм на диаметр), для достижения шероховатости 0,16-0,02 мкм. Процесс осуществляется при малых окружных скоростях изделия (8-40 м/мин.), малых давлениях мелкозернистых брусков (1,5-3 кгс/см2) при их колебательном движении с частотой от 500-600 до 2000-3000 двойных ходов / минуту с амплитудой 2-5 мм. При суперфинишировании полностью удаляется волнистость, уменьшается огранка, удаляется дефектный поверхностный слой металла. После суперфиниширования формируется упрочненный поверхностный слой без структурных изменений, что улучшает эксплуатационные свойства деталей, работающих в условиях трения, скольжения или качения. Рабочим инструментом является абразивная головка с одним - четырьмя абразивными брусками;

Жидкостная отделка и полирование - процесс обработки, при котором жидкость, насыщенная абразивом, со скоростью 50 м/с и более ударяется об обрабатываемую поверхность, уменьшая шероховатость;

Ленточное шлифование и полирование - обработка изделия бесконечной шлифовальной лентой, изготовленной из шлифовальной шкурки на тканевой и бумажной основах;

Д оводка и притирка - абразивная обработка свободным абразивным зерном в виде суспензии и паст, так и специальными доводочными кругами и шаржированными притирами, обеспечивающая шероховатость 0,160-0,08 и выше, а так же высокую точность их размеров и формы (первый класс и выше).

а) Круглое наружное шлифование с продольной подачей

б) Круглое наружное шлифование врезанием

в) Бесцентровое шлифование

г) Круглое внутреннее шлифование

д) Плоское шлифование периферией круга

е) Плоское шлифование торцом круга

1. Направление вращения шлифовального круга

2. Вращение шлифуемой детали

3. Направление прямолинейного возвратно-поступательного движения детали

4. Направление поперечного перемещения шлифовального круга

5. Опорный нож при бесцентровом шлифовании

  1. Направление вращения подающего круга

6.2 Хонингование, полирование, суперфиниш, поверхностное деформирование.

Хонингование

В настоящее время в серийном и массовом производстве при изготовлении ответственных деталей предъявляются высокие требования к точности и шерохо­ватости поверхности: некруглость менее 1 мкм, волнистость менее 0,2 мкм, нецилиндричность и непрямолинейность образующей менее 2—5 мкм, параметр шероховатости Ra = 0,02- 0,8 мкм, отсутствие дефектного слоя металла (структурно-фазовых изменений, напряжений растяжения, микротрещин), определенные значения параметров формы микронеровностей и опорной поверхности.

Обеспечение этих требований достигается с помощью таких процессов абразивной обработки, как хонингование брусками из традиционных и сверхтвердых абразивных материалов. Этот процесс относят к процессу доводки; хонингование производится при одновременно выполняемых вращательном и возвратно-поступательном движениях инструмента (головки с брусками). На рис.1 приведена схема рабочего движения. Подача (разжим) брусков в радиальном направлении при хонинговании производится либо непрерывно, под воздействием постоянного усилия, либо периодически, на каждый двойной ход хонинговальной головки.

Рис.1 Схема движений бруска и детали при хонинговании:

1 — деталь; 2 — брусок; 3 — перебег; 4 — перекрытие (Vок — окружная скорость, Vвп — скорость возвратно-поступательного движения, αс — угол сетки)

При контакте рабочей поверхности бруска с обрабатываемой поверхностью заготовки происходит царапанье металла одновременно большим числом абразивных частиц. Размер таких частиц при хонинговании составляет 20—100 мкм, среднее число частиц на поверхности бруска 20—400 зерен на 1 мм2. Основными видами взаимодействия абразивных зерен с металлом являются микрорезание со снятием тончайших стружек и трение с пластическим оттеснением металла. Для интенсивного резания необходимо, чтобы абразивный брусок самозатачивался путем скалывания и вырывания затупившихся зерен из связки. При использовании брусков из сверхтвердых абразивных материалов (алмаза, эльбора) зерна длительное время сохраняют свою остроту, преобладает микроскалывание зерен, а не вырывание их, что значительно повышает стойкость брусков. Путем выбора оптимальных характеристик брусков и регулирования параметров обработки (скорости, давления) можно управлять процессом обработки, осу­ществляя на первой стадии непрекращающееся резание металла в течение достаточно длительного времени, необходимого для исправления погрешностей формы заготовки, удаления исходной шероховатости и дефектного слоя. Скорость съема металла при этом составляет 2—4 мкм/с. Для получения поверхности с малой шероховатостью (Ra= 0,1—0,3 мкм при хонинговании), а также для создания благоприятного микрорельефа поверхности деталей и упрочненного поверхностного слоя металла процесс обработки на заключительной стадии может быть переведен в режим преобладающего граничного трения, при котором съем металла резко сокращается, а брусок выглаживает обрабатываемую поверхность. Такой переход можно осуществить, изменяя параметры обработки: повышая окружную скорость заготовки или инструмента, снижая давление бруска и частоту колебаний бруска.

Ранее применявшийся процесс обработки брусками с самопрекращением резания и съема металла был неуправляемым и не мог обеспечивать стабильного ка­чества деталей, так как самопрекращение съема металла часто происходит значительно раньше, чем удаляется припуск, необходимый для исправления погреш­ностей формы и устранения дефектного слоя.

В отличие от шлифования, при котором контактная поверхность составляет незначительную часть рабочей поверхности круга, при хонинговании брусок постоянно соприкасается с деталью по всей рабочей поверхности, причем в начальный момент времени брусок прирабатывается к обрабатываемой поверхности. Такой контакт пары брусок — заготовка способствует повышению производительности обработки и точности формы деталей. Давление при хонинговании на поверхности контакта бруска с деталью составляет 0,1—1 МПа, что в 10—100 раз меньше, чем давление при шлифовании. Скорость резания при обработке брусками 10—100 м/мин, т. е. в 15—100 раз ниже, чем при шлифовании. В результате при хонинговании тепловыделение в зоне обработки значительно ниже, чем при шлифовании, а контактная температура не превышает 150—200 ° С. Таким образом, отсутствуют физические причины образования в поверхностном слое микротрещин и прижогов, а также остаточных напряжений растяжения.

При хонинговании в системе поддержания контакта бруска с деталью контакт замыкается кинематически, с помощью клиновой пары, жесткость системы прижима брусков высока, сила резания при наличии погрешностей формы заготовки непрерывно изменяется. Имеется ряд современных хонинговальных станков, на которых заготовка или хонинговальная головка также совершает дополнительное колебательное движение; такой процесс назван вибрационным хонингованием. Этот процесс особенно эффективен при хонинговании глухих отверстий.

Процесс хонингования используют главным образом как способ обработки отверстий. В настоящее время разработаны и используются станки и головки для наружного хонингования.

Хонингование применяют, для получения поверхностей с шероховатостью Ra= 0,16…0,32 мкм, в последнее время разработаны мелкозернистые бруски, с помощью которых осуществляется отделочное хонингование Ra= 0,06…0,1 мкм.

Таким образом, хонингование представляет собой процесс обработки связанный закрепленными абразивными зернами, осуществляемого с помощью инструмента – брусков – при относительно низких скоростях и давлениях в условиях одновременного контакта всей рабочей поверхности инструмента с заготовкой.

Области применения операции хонингования

Хонингование применяется в основном как окончательная операция обработки высокоточных отверстий в деталях и является более эффективной технологи­ческой операцией, чем притирка и полирование абразивными пастами и суспензиями. Как правило, хонингование производят после операций шлифования, раста­чивания, зенкерования, развертывания, протягивания; в некоторых случаях черновое хонингование заменяет операции шлифования. Диапазон размеров хонингуемых отверстий очень широк: диаметр от 5 до 500—800 мм, длина до 20 м. Хонингованием обрабатывают сквозные и глухие цилиндрические отверстия с гладкой или прерывистой поверхностью (шпоночные пазы, кольцевые канавки), шлицевые отверстия, а также конические и некруглые отверстия в целях создания требуемого микрорельефа, для чего в хонинговальных головках имеются эластичные элементы системы прижима брусков. Хонингование часто используют для одновременной обработки нескольких соосных отверстий.

Хонингование получило широкое распространение в различных отраслях машиностроения при обработке гильз и блоков цилиндров двигателей, шатунов, зуб­чатых колес, цилиндров гидросистем и амортизаторов, деталей топливной аппаратуры, типа труб больших длин и диаметров и др. Существуют и получили практическое применение такие разновидности хонингования, как сухое (без применения смазочно-охлаждающей жидкости) хонингование статоров электродвигателей; электрохимическое хонингование отверстий большой длины; вибрационное хонингование, при котором хонинговальной головке или обрабатываемой детали сообщают дополнительно колебания частотой до 10— 15 Гц и амплитудой 5—10 мм. В качестве примера обработки хонингованием наружных поверхностей можно привести процесс алмазного хонингования пакетов поршневых колец.

Особые случаи хонингования

Хонингование получило наиболее широкое применение при обработке сквозных и глухих цилиндрических отверстий. В результате постоянного повышения требований к точности, качеству и экономичности обработки, а также благодаря большим возможностям алмазного инструмента область применения хонингования и его разновидностей существенно расширяется. Во многих случаях это позволяет создавать качественно новые технологические процессы, обеспечивающие повышение надежности и ресурса, ответственных сопряжении деталей машин.

Используются хонингование и некоторые его разновидности при обработке внутренних, наружных и плоских поверхностей. К их числу относится хонингование с дополнительными осциллирующими движениями, хонингование прерывистых (многоярусных) отверстий, комбинированное хонингование отверстия и прилегающего к нему торца, хонингование ограниченных сферических поверхностей, обработка рабочих поверхностей поршневых колец, алмазное зенкерование и развертывание.

К числу прогрессивных методов обработки относится хонингование с дополнительным осциллирующим движением. На основе исследований, проведенных в нашей стране и за рубежом, установлено, что введение в состав движений при хонинговании дополнительного осциллирующего (колебательного) движения позволяет повысить точность геометрической формы обрабатываемых отверстий, улучшить обрабатываемость труднообрабатываемых материалов и увеличить производительность металлосъема. Интенсификация процесса металлосъема в рассматриваемом случае происходит благодаря тому, что при правильном выборе параметров режима обработки процесс хонингования имеет незатухающий характер, и режущие зерна при своем движении не повторяют траекторий движения предыдущих зерен. В результате этого их режущие свойства используются в более полной мере

В используемых на практике способах хонингования осциллирующее движение дополняет возвратно поступательное движение. Однако введение колебательного движения в осевом направлении ограничено массой подвижных частей, а также снижением точности обработки ввиду переменности направления осевой силы и от­клонений в величине перебега брусков. По этим причинам механизмами осевой осцилляции оснащаются хонинговальные станки, предназначенные для обработки лишь коротких отверстий диаметром до 50 мм.

Для преодоления указанных недостатков и ограничений в Уфимском авиационном институте был разработан новый способ осуществления осциллирующего движения в хонинговальном станке, сущность которого состоит в наложении колебательного движения на вращение шпинделя станка При такой схеме осциллиру­ющего движения все подвижные звенья имеют вращательное (или вращательно-качательное) движение, что позволяет применять опоры качения, обеспечить возможность плавного регулирования частоты и амплитуды колебаний, по мере необходимости производить включение или выключение осциллирующего движения, применять механизм осцилляции независимо от размеров хонинговального станка.

Лучшие результаты обработки получаются при однонаправленных траекториях движения режущих зерен, что при наличии осевой осцилляции невыполнимо Условием получения такой траектории при круговой осцилляции по синусоидальному закону является следующее неравенство

где λ—частота осцилляции, β—удвоенная амплитуда круговой осцилляции (в оборотах), n—частота вращения шпинделя, об/с

Дальнейшим развитием рассмотренных схем является хонингование с одновременно вводимыми осевой и круговой осцилляцией. Подобная схема обработки впервые была предложена в Пермском политехническом институте на основе использования кинематики плоскодоводочного станка с растровой траекторией. Траектории движения режущих зерен при различной кинематике хонингования показаны на рис 2. Обычная схема хонингования (рис 2, а) характеризуется типичной сеткой следов обработки в виде пересекающихся винтовых линий Траектории движения режущих зерен при наличии осевого или кругового осциллирования по синусоидальному закону представлены на рис. 2, б, в Они образуются в результате сложения основного и колебательного движений и имеют идентичный характер.

Рис 2 Траектории движения режущих зерен при различной кинематике процесса хонингования

В схеме, предложенной Пермским политехническим институтом в качестве основных рабочих движений резания, приняты синусоидальные осевые и круговые колебания, а вращательное и возвратно-поступательное движения соответственно являются круговой и осевой подачами инструмента. При такой кинематике хонингования образуется растровая траектория движения зерен в виде фигур Лиссажу (рис. 2, г), образующих при правильном подборе параметров составляющих движений равномерную густую сетку следов обработки Сетка распределяется по площади криволинейного четырехугольника со сторонами, равными удвоенной амплитуде каждого колебательного движения Равномерное распределение сеток по всей обрабатываемой поверхности обеспечивается за счет круговой и осевой подач При таких сетках ни одно из зерен не перемещается по траектории другого зерна, что обеспечивает интенсивное использование режущей способности хонинговальных брусков, дает образование мелкой легко удаляемой из зоны резания стружки. В результате существенно возрастает производитель­ность металлосъема и точность геометрической формы обрабатываемых отверстий.

4. Инструмент для хонингования

При хонинговании используют бруски изготовленный методом прессования на керамической и бакелитовой основе. Абразивным материалом являются белый электрокорунд марок 23А, 24А, 25А и зеленый карбид кремния марок 63С, 64С, а также в качестве абразива используется алмаз и эльбор. Для хонингования используют бруски 2-х типов: БКв – квадратные, БП – плоские. Размеры: длина от 15 до 200 мм ширина и высота от 2 до 80 мм.

Широкое распространение на операциях хонингования получили алмазные бруски, что обусловлено значительным повышением их стойкости и режущей способности по сравнению с брусками из электрокорунда и карбида кремния. При выборе размеров алмазных брусков руководствуются следующими соотношениями: суммарная ширина комплекта брусков составляет 0,15—0,35 длины окружности обрабатываемого отверстия. Длина бруска составляет:(0,7—1)l (l—длина обрабатываемого отверстия) при D<1 (D-диаметр); (0,5—0,8)l при D=1—3. При использовании широких брусков в них прорезают продольные пазы для улучшения подвода смазочно-охлаждающей жидкости и вымывания отходов.

Электрохимическое хонингование

Д ля значительного повышения производительности хонингования разработан способ электрохимического хонингования, при котором на механическое воздействие брусков накладывается эффект электрохимического (анодного) растворения металла. Одной из схем электрохимического хонингования является обработка брусками на токопроводящей связке: металлической и бакелитовой с графитным наполнителем. Однако при такой схеме часто наблюдается электроэрозионные явления на контакте брусок- деталь вследствии малого зазора, равного высоте выступающей части абразивных зерен и большой поверхностью контакта. Поэтому наиболее широкое распространение получила схема со специально установленными в хонинговальной головке катодами и нетокопроводящими или изолированными брусками (рис.4). Конструкция станка для электрохимического хонингования мало отличается от конструкции обычного хонинговального станка. Число оборотов, скорость возвратно-поступательного движе-ния, механизм радиальной подачи хонин-говальных брусков примерно одинаковы. Некоторые различия, обусловленные особен-ностями электрохимиче­ского процесса, состоят в том, что от отрицательного полюса источника ток медно-графитовыми щетками с помощью коллектора на вращающемся шпинделе подводится к хонинговальной головке. Приспособление с обрабатываемой деталью подключено к положительному полюсу. В качестве источников тока могут быть использованы низковольтные генераторы постоянного тока и выпрямители, рассчитанные на силу тока 1000—10 000 А, позволяющие бесступенчато регулировать напряжение от 5 до 18В. Детали станка, находящиеся в контакте с электролитом, изготовлены из коррозионно-стойких сталей.

Резервуар для электролита имеет объем 500— 1000 дм в зависимости от требуемого съема материала. Большое влияние на производительность и шероховатость обработанной поверхности оказывает фильтрация электролита, благодаря которой из раствора удаляются отходы, представляющие собой смесь мельчайших стружек металла, зерен абразива и хлопьеобразных продуктов окисления, быстро забивающих обычные фильтры. Для фильтрации необходимо применять центрифуги и магнитные сепараторы.

Головка для электрохимического хонингования мало отличается от обычной. Катодом может служить корпус головки, имеющий меньший диаметр, чем диаметр обрабатываемого отверстия, на удвоенную величину межэлектродного зазора, или электрод, размещенный между хонинговальными брусками. Поверхности катодов не подвергаются изнашиванию и служат только для подвода тока. Бруски на токопроводной связке должны быть тщательно изолированы от несущих колодок для предотвращения короткого замыкания. Головку с неподвижным катодом применяют для съема небольших припусков (до 0,5—0,8 мм), а головку с подвижным катодом — для съема припусков свыше 1 мм. Электрохимическое алмазное хонингование тонкостенных азотированных цилиндров из стали 38ХМЮА с твердостью поверхностного слоя 62—67 НКСэ производят предварительно головкой с шестью алмазными брусками АС20250/200М1100 % и неподвижным катодом при следующих параметрах обработки:

Окружная скорость, м/мин ........ 150—200

Скорость поступательного движения, м/мин . . 14—16

Давление брусков, МПа ......... 0,2—0,6

Плотность тока. А/см2 .......... 2—5

Начальный межэлектродный зазор, мм .... 0,4—0,5

Объемный расход электролита, л/мин ..... 20—40

За 2 мин удаляется припуск 0,3—0,4 мм. Погрешность формы цилиндров после обработки составляет не более 0,02 мм при первоначальной погрешности 0,1—0,2 мм. Параметр шероховатости обработанной поверхности после предварительного хонингования Ra= 0,32— 0,63 мкм. При последующем отделочном электрохимическом абразивном хонинговании в течение 30 с параметр Ra снижается до 0,08—0,16 мкм. В качестве инструмента применяют три подпружиненных бруска 63СМ14С2К и три жестко установленных деревянных бруска, поддерживающих межэлектродный зазор между катодом и обрабатываемой поверхностью.

Электрохимическое хонингование по сравнению с обычным обладает рядом преимуществ. Производительность по съему металла в 4—8 раз выше и не зависит от твердости и прочности материала, а точность, обеспечиваемая хонингованием, достигается быстрее. Так как процесс ведется при небольших давлениях брусков, электрохимическим хонингованием целесообразно обрабатывать детали пониженной жесткости. Экономичность электрохимического хонингования тем больше, чем выше припуски на обработку и чем хуже обрабатываемость материала. После электрохимического хонингования наблюдается «растра вливание» поверхностного слоя металла по границам зерен на глубину до 3—4 мкм, поэтому обязательным является заключительный этап обработки с выключенным током в течение 10с, что позволяет удалить расплавленный слой.

Полирование поверхностей

Полирование — это процесс обработки материалов до получения зеркального блеска поверхности. Различают два вида полирования: черновое (предварительное) и чистовое (глянцевание). Черновое полирование используется для механического удаления неровностей поверхности с помощью эластичных кругов и лент. Чистовое полирование осуществляется мягкими эластичными кругами с нанесёнными на них полировальными пастами.

Особое внимание нужно уделять подготовке поверхности перед процессом полирования, то есть черновому полированию. Это объясняется тем, что для получения качественного результата на поверхности не допускаются никакие дефекты. Глубокие риски и раковины, легко обнаруживаемые в начальной стадии полирования, необходимо устранить с помощью мелкозернистых шлифовальныхкругов или абразивных лент и только после этого приступать к чистовому полированию. Для уменьшения расхода абразива и повышения производительности полирование осуществляют с наименьшим числом переходов. Под переходом понимают операцию полирования, выполняемую, например, абразивом определенной зернистости. За каждый “переход” шероховатость поверхности улучшается на 1-2 класса. На количество переходов, а, следовательно, и на время полирования оказывает значительное влияние исходная шероховатость поверхности. Чем лучше подготовлена поверхность под полирование, т. е. чем выше класс исходной чистоты поверхности, тем меньше переходов потребуется при полировании и тем быстрее будет обработка. На нашем сайте Вы найдёте специально отобранные для этапа чернового полирования абразивные материалы, инструмент и вспомогательные продукты.

После того, как поверхность полностью выровнена, можно приступать к чистовому полированию, или глянцеванию. В течение длительного времени полагали, что механическое полирование и шлифование ввиду внешнего сходства этих процессов не отличаются друг от друга. Особенностью полирования считали лишь то, что оно осуществляется более тонкими абразивами, оставляющими более мелкие риски, не видимые глазом. Однако изучение механизма полирования различных материалов показало, что этот процесс имеет мало общего с процессом шлифования. Различные объяснения механизма процесса полирования можно свести к следующим

трем направлениям:

1) механическое полирование — когда механизм процесса объясняется съемом микронеровностей с поверхностного слоя, а ход процесса такими механическими свойствами материала, как твердость и пластичность;

2) физическое полирование — когда основными причинами, определяющими процесс полирования, считают температуру плавления и теплопроводность полируемого материала;

3) химическое полирование — когда процесс полирования объясняется в основном съемом оксидных пленок, постоянно образующихся под действием окружающей среды.

Основываясь на практических наблюдениях, можно заключить, что процесс полирования представляет собой комплекс механических, физических, электрических и химических явлений, которые тесно связаны и взаимосвязаны, и раздельно изменяются в большую или меньшую сторону в зависимости от рода полируемого материала, полировального инструмента, режимов обработки и внешней среды.

Как уже говорилось выше, в чистовом полировании участвуют как абразивные материалы, так и полировальные пасты. Чтобы глянцевание было эффективным, полировальные пасты должны отвечать следующим требованиям:

■ обеспечивать получение гладкой поверхности с зеркальным блеском;

■ быть достаточно вязкими и прочными, а также однородными по составу;

■ хорошо удерживаться на рабочей поверхности круга;

■ не крошиться и не рассыпаться, не загрязнять и не царапать полируемую поверхность.

Для получения идеально гладкой поверхности важно также контролировать скорость полировальной машины. Она не должна превышать 1800 об/мин, чтобы не перегреть покрытие и не вызвать его размягчение. Слишком низкая скорость так же чревата

перегревом покрытия. Рекомендуемая скорость, таким образом, должна быть в интервале от 1200 до 1800 об/мин. Советуем начинать с медленного старта и использовать машины с разными скоростными режимами. Особое внимание нужно уделить чистоте полировального круга. Если на круге полировали одну поверхность, а затем начали полировать другой, более мягкий материал, то частицы твердого материала, приставшие к кругу, увеличат его режущие свойства и этим ухудшат качество поверхности: блеск не будет чистым.

Суперфиниш

Суперфиниш – метод полирования при повышенных требованиях к гладкости и чистоте поверхности.

Суперфиниш дополняет шлифование и твердое точение, позволяет получить оптимальные поверхности и снизить время обработки. Таким образом может быть экономично произведена полировка предварительно подготовленных поверхностей.

Этот способ предоставляет пользователю возможность добиться воспроизводимого высокого качества поверхности вращательно-симметричных деталей из материала с практически любыми свойствами. При этом улучшается структура поверхности в микронном диапазоне – до 0,004 мкм Ra

Преимуществом способа является равномерная, свободная от налета финишная обработка по всей поверхности. Суперфиниш повышает долю несущей поверхности и, тем самым, износостойкость. Порядок толщины снимаемого материала – нескольких тысячных долей миллиметра. Параметры получаемой поверхности превышают значения, достигаемые при хонинговании и шлифовании. 15 лет назад шлифование бруском считалось критерием точной обработки поверхностей. Профильное ленточное шлифование, называемое также суперфиниш, предлагает сегодня новые стандарты гладкости. При суперфинише удаляются аморфные отложения материала, т.н. "мягкая корка". Мягкий поверхностный слой толщиной 0,002 – 0,008 мм образуется из-за высоких температур при обработке шлифовальным бруском. Метод суперфинишной полировки позволяет пользователю получить практически любую чистоту и гладкость поверхности, так как происходит удаление только пиков шероховатостей. Поэтому не происходит изменения геометрии обрабатываемой детали. Избыточные размеры, например, припуски на шлифование не могут быть удалены этим методом. Обработка поверхности происходит с помощью суперфинишных шлифовальных лет. Они обычно поставляются длиной 15 – 50 м и зерном 0,1 – 100 мкм. Перемещение ленты происходит посредством двигателя с регулируемой скоростью. Подача плавно регулируется. Лента проходит через эластичный прижимной ролик, который совершает колебательные движения на поверхности обрабатываемой детали вдоль ее оси. При постоянной подаче нового шлифовального средства по всей поверхности достигается равномерная и свободная от налета финишная обработка. Сочетание регулируемой частоты колебаний, правильно выбранной подачи суперфинишного устройства и числа оборотов обрабатываемой детали позволяет получить желаемую шлифованную поверхность. Полировочное шлифование производится с водой или с добавлением промывочной эмульсии. Все устройства выполнены в виде насадок, так что преимуществами этого способа можно воспользоваться даже на обычных токарных станках.

Поверхность обрабатываемой детали

При взгляде через микроскоп видна типичная поверхностная структура после шлифования: вершины и впадины.

Шлифование

Финиширование или хонингование бруском улучшает поверхность, однако может оставить после себя шлифовочные царапины из-за выкрашивания зерен.

Ленточный суперфиниш, полирование

Совершающая колебательные движения лента повышает долю несущей поверхности посредством сетчатого шлифования. Возникает ровная и воспроизводимая поверхность.

Метод суперфиниша используется при обработки следующих материалов:покрытия с использованием твердого хромирования и карбида вольфрама, твердые сплавы, алюминий, медь, резина, керамика, пластмассы и никелевые сплавы.

Область применения

Валы для глубокой печати, фольгопрокатные валы, резиновые валы, валы для перекидных выключателей, гнезда подшипников, уплотнительные поверхности, поршневые штоки, копировальные валики, пневматические поршни, поршни для газовых пружин, заслонки клапанов, валы рукояток переключения, шаровые клапаны, валы печатающих устройств и т.п.. Благодаря применению технологии суперфиниша может быть достигнуто стабильное воспроизводимое качество поверхности до 0,004 мкм. Могут быть обработаны детали различных форм и из различных материалов. Время обработки уменьшается, результат обработки оптимизируется.

Поверхностное деформирование

Поверхностное пластическое деформирование

(ППД) - один из видов упрочнения материалов. ППД особенно эффективно для изделий, работающих в условиях знакоперем. на-гружения (оси, зубчатые колёса, коленчатые валы, подшипники, инструменты, сварные конструкции и т. п.). Подразделяется на статическое и динамическое - накатывание и раскатывание роликами и шариками, обкатка зубчатыми валками, чеканка (в т. ч. пневматич. пучковым упрочнителем), алмазное выглаживание, дорнование. вибрац. и гидроабразивная обработка и т. п. ППД уменьшает шероховатость поверхности, обеспечивает наклёп и остаточные сжимающие напряжения, повышающие усталостную прочность, износостойкость, долговечность изделия. Применение ППД позволяет во мн. случаях исключить операцию шлифования из технологич. процесса изготовления деталей.

Список используемой литературы

1. Технология конструкционных материалов. Под общ. ред. A.M. Дальского. ‑ 2-е изд., перераб. и доп. - М.: Машиностроение, 1985. ‑ 448 с.

2. Технология конструкционных материалов. Под общ. ред. A.M. Дальского. ‑ 3-е изд., перераб. и доп. - М.: Машиностроение, 1993. ‑ 448 с.

3. Технология конструкционных материалов. Под общ. ред. A.M. Дальского. ‑ 5-е изд., перераб. и доп. - М.: Машиностроение, 2004. ‑ 512 с.

131

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]