Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ЭЛТ ОТВЕТЫ.docx
Скачиваний:
7
Добавлен:
01.05.2025
Размер:
1.02 Mб
Скачать
  1. Магнитная индукция, магнитная проницаемость, магнитный поток.

Магнитная индукция   — векторная величина, являющаяся силовой характеристикой магнитного поля (его действия на заряженные частицы) в данной точке пространства. Определяет, с какой силой   магнитное поле действует на заряд  , движущийся со скоростью  .

Более конкретно,   — это такой вектор, что сила Лоренца  , действующая со стороны магнитного поля[1] на заряд  , движущийся со скоростью  , равна

где косым крестом обозначено векторное произведение, α — угол между векторами скорости и магнитной индукции (направление вектора  перпендикулярно им обоим и направлено по правилу буравчика).

Также магнитная индукция может быть определена[2] как отношение максимального механического момента сил, действующих на рамку с током, помещенную в однородное поле, к произведению силы тока в рамке на её площадь.

Является основной фундаментальной характеристикой магнитного поля, аналогичной вектору напряжённости электрического поля.

Магнитная проницаемость — физическая величина, коэффициент (зависящий от свойств среды), характеризующий связь между магнитной индукцией   и напряжённостью магнитного поля   в веществе. Для разных сред этот коэффициент различен, поэтому говорят о магнитной проницаемости конкретной среды (подразумевая ее состав, состояние, температуру и т. д.).

Магнитный поток — поток   как интеграл вектора магнитной индукции   через конечную поверхность  . Определяется через интеграл по поверхности

при этом векторный элемент площади поверхности определяется как

где   — единичный вектор, нормальный к поверхности.

Также магнитный поток можно рассчитать как скалярное произведение вектора магнитной индукции на вектор площади:

где α — угол между вектором магнитной индукции и нормалью к плоскости площади.

Магнитный поток через контур также можно выразить через циркуляцию векторного потенциала магнитного поля по этому контуру:

  1. Эдс наведенная в проводе. Эдс, наведенная магнитным полем тока в проводе работающей линии

          Будем считать, что МП, создаваемое током  , глубже   в землю не проникает и обратный провод рассматриваемого контура линии 2 расположен на глубине  . Тогда, подставляя в уравнение (1)   вместо  , получим выражение для расчета ЭДС, наводимую в заземленном контуре линии 2 МП, создаваемым током  , протекающем в проводе линии 1:

.

(9)

Выражение (9) можно вывести с использованием уравнений для векторного потенциала и индукции МП.

  1. Измерение сопротивлений методом амперметра и вольтметра.

Метод амперметра-вольтметра. Основан на измерении тока, протекающего через измеряемое сопротивление и падения напряжения на нем. Применяют две схемы измерения: измерение больших сопротивлений (рис. 1.9,а) и измерение малых сопротивлений (рис. 1.9,б). По результатам измерения тока и напряжения определяют искомое сопротивление. Для схемы рис. 1.9,а искомое сопротивление и относительная методическая погрешность измерения определяются где Rx - измеряемое сопротивление; Rа - сопротивление амперметра. Для схемы рис. 1.9,6 искомое сопротивление и относительная методическая погрешность измерения определяются где Rв -сопротивление вольтметра. Из определения относительных методических погрешностей следует, что измерение по схеме рис. 1.9,а обеспечивает меньшую погрешность при измерении больших сопротивлений, а измерение по схеме рис. 1.9,6 - при измерении малых сопротивлений. Погрешность измерения по данному методу рассчитывается по выражению где γв, γa, - классы точности вольтметра и амперметра; Uп, I п пределы измерения вольтметра и амперметра. Используемые при измерении приборы должны иметь класс точности не более 0,2. Вольтметр подключают непосредственно к измеряемому сопротивлению. Ток при измерении должен быть таким, чтобы показания отсчитывались по второй половине шкалы. В соответствии с этим выбирается и шунт, применяемый для возможности измерения тока прибором класса 0,2. Во избежании нагрева сопротивления и, соответственно, снижения точности измерений, ток в схеме измерения не должен превышать 20% номинального. Рис. 1.9. Схема измерения больших (а) и малых (б) сопротивлений методом амперметра-вольтметра. Рекомендуется проводить 3 - 5 измерений при различных значениях тока. За результат, в данном случае, принимается среднее значение измеренных сопротивлений. При измерениях сопротивления в цепях, обладающих большой индуктивностью, вольтметр следует подключать после того как ток в цепи установится, а отключать до разрыва цепи тока. Это необходимо делать для того, чтобы исключить возможность повреждения вольтметра от ЭДС самоиндукции цепи измерения.