
- •2) Полярные координаты.Связь между полярными координатами точки и ее прямоугольными координатами.Преобразование координат,паралелльный сдвиг.
- •4)Ур-е прямой,проходящей чз данную точку с данным угловым коэф-м.Ур-е прямой,проходящей чз 2 данные точки.
- •5)Угол м/у 2-мя прмыми.Условие параллельности или перпендикулярности 2-х прямых.
- •6)Общее уравнение прямой и ее исследование.Ур-е прямой в отрезках.
- •7) Линии второго порядка.(Окружность,Гип-ла,параб-ла,эллипс,их канонич.Ур.)
- •8) Прямоугольная система координат в пространстве.Уравнение поверхностей.Ур-е цилиндрической поверхности.
- •9) Скалярные или векторные величины.Определение вектора.Проекции вектора на оси координат.Направляющие косинусы вектора.
- •10) Сложение двух векторов.Произведение вектора на число.Разложение вектора по базису.
- •11) Скалярное произведение 2-х векторов,свойтсва,чз координаты выражение,угол между вук-ми.
- •12) Векторное произведение векторов,св-ва,чз координаты.
- •13) Угод между векторами.Условие парал-ти и перрпенд-ти 2-х векторов.
- •14) Определение и геометрический смысл смешанного произведения 3-х векторов.
- •15)Общее уравнение плоскости.Нормальный вектор плоскости.
- •16) Угол между плоскостями.Усл-я парал-ти и перпенд-ти плоскостей.
- •17) Каноническое ур-е прямой в пространстве.Угол между прямыми.Усл-ия парал-ти и перп-ти прямых.
- •19)Поверхности второго порядка.(сфера,эллипсоид,однополосный и 2-х гиперболоид,гиперб.Парабалоид,конус)
- •20)Понятие матрицы.(определение,единичная матрица)Умножени матрицы.
8) Прямоугольная система координат в пространстве.Уравнение поверхностей.Ур-е цилиндрической поверхности.
-Прямоугольная система координат Охуz в пространстве определяется заданием масштабной единицы измерения длин и трех пересекающихся в одной точке О взаимно перпендикулярных осей:Ох,Оу,Оz. Точка О-начало координат,Ох-ось абсцисс ,Оу-ось ординат,Оz-ось аппликат.М-произвольная точка пространства,проведем чз точку 3 плоскости перпендикулярные координатам осям Ох Оу Оz.Точки пересечения плоскостей с осями обозначим соответственно чз Мх,Му,Mz.
Прямоугольными координатами М называют:х=ОМх,у=Ому,z=OMz.
-Поверхность в пространстве можно рассматривать как геометрическое место точек, удовлетворяющих какому-либо условию. Например, сфера радиуса R с центром в точке О1 есть геометрическое место всех точек пространства, находящихся от точки O1 на расстоянии R.
Прямоугольная система координат Oxyz в пространстве позволяет установить взаимно однозначное соответствие между точками пространства и тройками чисел х, у и z — их координатами. Свойство, общее всем точкам поверхности, можно записать в виде уравнения, связывающего координаты всех точек поверхности.
Уравнением данной поверхности в прямоугольной системе координат Oxyz называется такое уравнение F(x, у, z) = 0 с тремя переменными х, у и z, которому удовлетворяют координаты каждой точки, лежащей на поверхности, и не удовлетворяют координаты точек, не лежащих на этой поверхности. Переменные х, у и z в уравнении поверхности называются текущими координатами точек поверхности.
Уравнение поверхности позволяет изучение геометрических свойств поверхности заменить исследованием его уравнения. Так, для того, чтобы узнать, лежит ли точка M1(x1;y1;z1) на данной поверхности, достаточно подставить координаты точки M1 в уравнение поверхности вместо переменных: если эти координаты удовлетворяют уравнению, то точка лежит на поверхности, если не удовлетворяют — не лежит.
- Цилиндрической
поверхностью
z=0
9) Скалярные или векторные величины.Определение вектора.Проекции вектора на оси координат.Направляющие косинусы вектора.
Скалярная величина (скаляр) – это физическая величина, которая имеет только одну характеристику – численное значение.Векторная величина (вектор) – это физическая величина, которая имеет две характеристики – модуль и направление в пространстве.
Проекцией вектора а на координатную ось называют длину отрезка между проекциями начала и конца вектора а (перпендикулярами, опущенными из этих точек на ось) на эту координатную ось
.
Тогда проекцией вектора
на
ось называется
разность x1 – x2 между
координатами проекций конца и начала
вектора
на
эту ось.
Ясно,
что если угол между вектором
и
осью острый,
то x2> x1,
и проекция x2 – x1>
0; если этот угол тупой, то x2< x1 и
проекция x2 – x1<
0. Наконец, если вектор
перпендикулярен
оси ,
то x2=x1 и x2– x1=
0.
Таким образом, проекция вектора на ось – это длина отрезка A1B1, взятая с определённым знаком. Следовательно, проекция вектора на ось это число или скаляр
-Направляющие косинусы вектора (в пространстве) – это косинусы углов, которые вектор образует с положительными полуосями координат. Направляющие косинусы однозначно задают направление вектора. Если вектор имеет длину 1, то его направляющие косинусы равны его координатам. В общем случае для вектора с координатами (a; b; c) направляющие косинусы равны:
где , , – углы, составляемые вектором с осями x, y, z соответстве