
- •Экзаменационные вопросы по курсу тммм
- •1) Основные понятия
- •2) Основные виды механизмов.
- •3) Кинематические цепи. Кинематические соединения
- •5) Структурный синтез механизмов
- •6) Единый принцип л.В.Ассура образования м-ов.
- •7) Замена высших пар 4-го класса в плоских м-мах кинематическими низшими парами 5-го класса.(Рисунки смотреть в конспекте).
- •8) Порядок структурного анализа механизмов.
- •9) Понятие термина «машина». Классификация машин
- •10) Задачи и методы кинематического анализа. Масштабные коэффициенты
- •11) Метод планов. Построение планов скоростей (пс) и определение скоростей.
- •12) Метод планов. Построение плана ускорений (пу)
- •13) Построение пс для механизмов, имеющих кулисные и поступательные пары. Определение величины и направлений угловых скоростей звеньев механизма
- •1 4) Построение пу для механизмов, имеющих кулисные и поступательные пары. Определение величины и направлений угловых ускорений звеньев механизма
- •1 5) Особенности плана скоростей и плана ускорений
- •16) Графическое дифференцирование. Определение масштабных коэффициентов
- •17) Задачи динамического анализа машин и механизмов.
- •18)Динамическая модель машинного агрегата.
- •19. Приведенные моменты инерции механизма.
- •20 Приведенные моменты сил сопротивления и сил движущих.
- •21. Определение приведенной силы.
- •22) Диаграмма работ от сил движущихся и сил полезного сопротивления. График изменения кинематической энергии рычажного механизма.
- •2 3) Определение момента инерции маховика методом Виттенбауэра
- •24) Механические передачи(редукторы,мультипликаторы,коробки скоростей,вариаторы,фрикционные передачи).
- •25) Виды зубчатых механизмов
- •26.Кинематический анализ зубчатых механизмов с неподвижными осями. Формулы для подсчета передаточного отношения.
- •27. Рядовые, ступенчатые, червячные передачи конические. Определение передаточных отношений и их передач.
- •28. Кинематический анализ зубчатых механизмов с подвижными осями колес (планетарные зубчатые передачи), 4-х звенный планетарный механизм Джемса. Формула Виллиса.
- •29. Планетарные редукторы со сдвоенными сателлитами. Редуктор Джемса. Редуктор Давида. Определение передаточных отношений.
- •30. Подбор чисел зубьев планетарного редуктора (соосность, соседство, условие сборки).
- •31) Эвольвента окружности и ее основные свойства.
- •33) Основные параметры зубчатых передач (эвольвентное зацепление), коэффициент относительного скольжения.
- •35) Способы изготовления зубчатых колёс
- •38*) Размеры корригированных зубчатых колес.
- •39) Межцентровое расстояние пары колес (нулевая передача, положительная передача, отрицательная передача).
- •40) Силовой расчёт. Его задачи. Классификация сил (внешние и внутренние)
- •41) Опред-е сил инерции и мом-ов инерции при вращ-ом,поступ-ом,и сложном движ-ях. Принцип Даламбера
- •42) Порядок силового расчёта(пример)
- •43) Теорема Жуковского о жестком рычаге
- •45) Кулачковые механизмы. Классификация кулачковых мех-ов.
- •46) Основные кинематические и геометрические параметры кулачковых механизмов. Условие выбора ролика.
- •47) Кинематических размеров км. Минимальный радиус вектора кулачка (км с коромысловый)
- •48) Минимальный радиус вектора кулачка (км и возвратно-поступательным толкателем, с толкателем)
- •51) Построение цпк и дпк для кулачковых механизмов с коромысловым толкателем.
- •52). Построение цпк и дпк для кулачковых механизмов с поступательным толкателем.
- •53)Построение цпк и дпк для кулачковых механизмов с .С тарельчатым толкателем.
- •54. Законы (режимы) движения кулачковых механизмов.И их влияние на работу механизмов.
- •55. Трение в механизмах и машинах. Виды и классификация трения.
- •56. Режимы движения механизмов
- •57) Определение кпд машин при последовательном, параллельном и смешанном соединении механизмов.
- •58) Основы определения теории машин-автоматов.
53)Построение цпк и дпк для кулачковых механизмов с .С тарельчатым толкателем.
На рис. 125 показано построение профиля кулачка в механизме с тарельчатым толкателем по методу обращения движения при заданной функции s = s(φ) и известном начальном радиусе r0. После разметки траектории точки в строят положения тарелки толкателя в обращенном движении,
Поворачивая ось тарелки на угол φ в сторону, противоположную направлению вращения кулачка, и перемещая плоскость тарелки от центра на величину ro + s. Профиль кулачка находят как огибающую положений тарелки в обращенном движении.
Следует обратить внимание на то, что внутри фаз подъема и опускания точка вк" касания тарелки с кулачком смещена от оси толкателя. Проведем через эту точку нормаль пп к профилю кулачка, которая одновременно является нормалью к данному положению плоскости тарелки, и отметим точку b2 основания перпендикуляра, опущенного на нормаль пп из центра о. Треугольник рb1b2 равный треугольнику ов'кв"к есть повернутый план скоростей по уравнению vb2=vb1+vb2b1
Отрезок pb2 изображает в масштабе схемы аналог скорости толкателя s'=ds/dφ поэтому положение точки контакта в'\ можно найти и без построения огибающей. Для этого надо из точки b'k отложить отрезок b'kb"k = pb2 так, чтобы после поворота его вокруг точки в\ на 90° в сторону вращения кулачка вектор pb2 соответствовал бы направлению движения толкателя. Диаметр тарелки должен быть больше удвоенной величины максимального смещения точки контакта от оси толкателя.
полярные координаты профиля r и β находим с учетом повернутого плана скоростей:
А
налог
скорости толкателя s'=ds/d<p
надо
считать положительным при подъеме
толкателя и отрицательным — при
опускании.
54. Законы (режимы) движения кулачковых механизмов.И их влияние на работу механизмов.
Выбор закона движения толкателя
Если в задании на проектирование не дан закон движения, то конструктор должен выбрать его из набора типовых законов движения, необходимо, чтобы ускорения толкателя не приводили к большим инерционным нагрузкам, а имеющаяся на предприятии технология позволила бы изготовить профиль с достаточной точностью.
Типовые законы движения делятся на законы с жесткими, мягкими ударами и безударные. С точки зрения динамических нагрузок, желательны безударные законы. Однако кулачки с такими законами движения технологически более сложны, так как требуют более точного и сложного оборудования, поэтому их изготовление существенно дороже. Законы с жесткими ударами имеют весьма ограниченное применение и используются в неответственных механизмах при низких скоростях движения и невысокой долговечности. Кулачки с безударными законами целесообразно применять в механизмах высокими скоростями движения при жестких требованиях к точности и долговечности. Наибольшее распространение получили законы движения с мягкими ударами, с помощью которых можно обеспечить рациональное сочетание стоимости изготовления и эксплуатационных характеристик механизма.
Рассмотрим четыре закона движения толкателя:
1. Равномерное движение толкателя (рис. 10.8, а) это наиболее простой закон движения. Кулачок имеет несложный профиль. Однако для быстроходных кулачковых механизмов он не пригоден, так как он связан со скачками скорости в начале и в конце хода толкателя, которые приводят к возникновению ускорений не ограниченных по величине. В начале и в конце хода толкателя, следовательно, силы инерции достигли бы бесконечно большой величины, имеют место «жесткие» удары. Исходя из указанных соображений, равномерное движение толкателя можно применять лишь для кулачковых механизмов при малых скоростях и малых мощностях.
2. Равноускоренное движение толкателя (рис. 10.8, б) скорость на первой части хода равномерно возрастает, а затем на втором участке хода равномерно убывает до нуля. На протяжении участков хода ускорение одинаковое. Участки разгона и замедления часто делают неодинаковыми, чтобы уменьшить ускорение и силы инерции на одном из них. Равноускоренное движение, характеризуемое прямоугольной диаграммой ускорений, не сопровождается ударами, скачков скорости нет, ускорения и, следовательно, силы инерции остаются ограниченными. Однако в быстроходных кулачковых механизмах этот закон движения вызывает повышенную вибрацию и износ. Причиной этого является изменение ускорения толкателя скачком, вызывающее «мгновенное» (за очень короткий промежуток времени) приложение к толкателю больших сил. Это явление называют «мягким» ударом.
3. Сглаженное равноускоренное движение толкателя (рис. 10.8, в). Достоинство – наименьшая величина максимального ускорения толкателя. Диаграмма ускорений имеет форму трапеции, что позволяет избежать скачков ускорения и «мягких» ударов. Такой закон движения может применяться и для быстроходных кулачковых механизмов.
4. Синусоидальный закон движения толкателя (рис. 10.8, г) позволяет получить наибольшую плавность движения, отсутствуют удары. Этот закон движения наиболее предпочтительно применять в быстроходных механизмах. Главным недостатком синусоидального (и трапецеидального) является высокая точность профиля кулачка.