Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
тер.мех.ответы.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
220.67 Кб
Скачать
  1. Соотношение между ускорениями двух точек плоской фигуры при плоском движении твердого тела.

  2. Равновесие тела с учетом трения скольжения. Законы Кулона.

1. Соотн. Между уск. 2-х точек при плоском движении.

vB=vA+ωxAB.

aB=dvB/dt=dvA/dt+(dω/dt)xAB+ ωx(dAB/dt)=aA+εxAB+ωx(ωx

AB).

Считая, что εхАВ=(aBA)τ;

(aBA)n=ω²∙AB, окончательно получим:

aB=aA+(aBA)τ+(aBA)n

aA – ускорение полюса;

aBA – ускорение движения вокруг полюса.

2. Сила трения скольжения. Законы Кулона для Fтр.Ск.:

1)Сила трения скольжения лежит в интервале 0 Fтр Fмах;

2) Сила трения скольжения не зависит от площади соприкасающихся тел, а зависит лишь от силы давления этого тела на поверхность

3)Сила тр.скольжения опр-ся по ф-ле: Fтр=fN, N-сила реакции опоры =Р, f-коэф-т трения скольжения

4)Коэф-т трения скольжения завис.от шероховатостей пов-тей трущихся тел, от температуры, от физич.состояния материала.

Билет №12.

  1. Мгновенный центр скоростей, способы нахождения мцс.

  2. Равновесие тела с учетом трения качения. Коэффициент трения качения.

1. Мцс. Способы нахождения.

При плоском движении твердого тела в каждый момент времени существует точка, скорость которой равна нулю. vP=vO+vPO=0, vO=ω∙OP=>OP= vO/ω.

Способы нахождения:

  1. на основе физического условия задачи.

  2. На основе предваритель-ного определения скорости двух точек.

2. Трение качения. Коэффициент трения качения.

Круглое тело вдавливается в опорную поверхность (дуга CD). Трение качения – сопротивление, возникающее при качении одного тела по поверхности другого. Полная реакция N’ опорной поверхности препятствует качению.

Нам нужен момент сопротивления качению => заменим N’ и представим в виде Fтр. и N, приложенных в точке В, смещенной от центра на δ. Условия равновесия: N=P, F=Q. QmaxR=δN. Mтр.max=δ∙N. Момент сопротивления качению 0<Mк<Mк.max (не зависит от радиуса). Коэффициент трения качения δ при предельном состоянии равновесия (при Qmax) N (сила нормального давления) отстает на δ от вертикального радиуса. δ не зависит от материала, из которого сделано тело. Определяется экспериментально.

Билет №13.

  1. Вращение твердого тела вокруг неподвижной точки. Число степеней свободы, углы Эйлера.

  2. Условия равновесия произвольной системы сил в векторной и аналитической формах. Частные случаи.

1. Вращение твердого тела вокруг неподвижной точки. Углы Эйлера.

Движение твердого тела, у которого одна точка неподвижна, называется сферическим. Количество степеней свободы n=3. (XA, YA, ZA).

Положение тела определяется с помощью углов Эйлера. Определение: свяжем с телом подвижную систему координат Oxyz. Плоскость xOy пересекает неподвижную плоскость x1Oy1 по прямой ОК – линии узлов.

Ψ – угол прецессии;

φ – угол собственного вращения

θ – угол нутации.

Все углы против часовой стрелке.

Если заданы функции Ψ=f1(t); φ=f2(t); θ=f3(t) то движение полностью определено.

2. Условия равновесия для произвольной простр.Системы сил, а также следствия из этих уравнений.

R=0 и Lo=0 –ур-я равновесия. Им соотв-ют 6 скалярных алгебраических ур-1 равновесия для простр.системы сил:

Fkх=0 Fkу=0 Fkz=0 Мх(Fk)=0 Му(Fk)=0 Мz(Fk)=0 – аналитическое условие равновесия для произвольной системы сил.

Пусть все силы  пл-ти хоу, тогда: Fkх=0 Fkу=0 Мо(Fk)=0 условие равновесия для произвольной плоской системы сил.

Условие равновесия для плоской системы параллельных сил.

Пустьсилы  оси оу, тогда Fkх=0 Мо(Fk)=0

Условие равновесия для пространственной системы параллельных сил.

F1, F2, F3,…,Fn  оси оz, тогда: Fkz=0 Мх(Fk)=0 Му(Fk)=0

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]