
- •Векторный способ задания движения точки. Траектория, скорость, ускорение точки.
- •Эквивалентность пар. Сложение пар. Условие равновесия системы пар сил.
- •1. Векторная система координат.
- •2. Эквивалентность пар. Сложение пар. Условия равновесия пар сил.
- •Координатный способ задания движения точки (прямоугольная декартова система координат). Траектория, скорость, ускорение точки.
- •Аксиомы статики.
- •1. Декартова система координат.
- •2. Аксиомы статики.
- •Естественный способ задания движения точки. Траектория, скорость, ускорение точки.
- •Алгебраический и векторный момент силы относительно точки.
- •1. Естественный способ.
- •2. Векторный и алгебраический момент пары сил.
- •Координатный способ задания движения точки (полярная система координат). Траектория, скорость, ускорение точки.
- •Пара сил. Теорема о сумме моментов сил, составляющих пару, относительно произвольной точки.
- •1. Полярные координаты
- •2. Т. О приведении произвольной системы сил к силе и паре сил.
- •Определение скорости точки при задании ее движения в криволинейных координатах.
- •Момент силы относительно оси.
- •1. Скорость точки в криволинейных координатах.
- •2. Момент силы относительно оси.
- •Понятие о криволинейных координатах. Координатные линии и координатные оси.
- •Основные виды связей и их реакции.
- •1. Криволинейные координаты.
- •2. Виды связей и их реакции.
- •Число степеней свободы твердого тела в общем и частных случаях его движения.
- •Лемма о параллельном переносе силы.
- •1. Число степеней свободы твердого тела
- •2. Лемма о параллельном переносе силы.
- •Поступательное движение твердого тела. Число степеней свободы, уравнения движения. Скорости и ускорения точек тела.
- •Связь векторного момента силы относительно точки с моментом силы относительно оси, проходящей через эту точку.
- •1. Поступательное движение.
- •2. Связь между моментом относительно оси и относительно точки.
- •Вращение твердого тела вокруг неподвижной оси. Векторные и скалярные формулы для скоростей и ускорений точек тела.
- •Теорема о приведении произвольной системы сил к силе и паре – основная теорема статики.
- •1. Вращение вокруг неподв. Оси.
- •2. Основная теорема статики (теор. Пуансо):
- •Плоское движение твердого тела. Уравнения плоского движения. Разложение плоского движения на поступательное движение вместе с полюсом и вращательное вокруг оси, проходящей через полюс.
- •Инварианты системы сил. Частные случаи приведения системы сил к простейшему виду.
- •2. Инварианты системы сил. Частные случаи приведения.
- •Соотношение между ускорениями двух точек плоской фигуры при плоском движении твердого тела.
- •Равновесие тела с учетом трения скольжения. Законы Кулона.
- •1. Соотн. Между уск. 2-х точек при плоском движении.
- •2. Сила трения скольжения. Законы Кулона для Fтр.Ск.:
- •Мгновенный центр скоростей, способы нахождения мцс.
- •Равновесие тела с учетом трения качения. Коэффициент трения качения.
- •1. Мцс. Способы нахождения.
- •2. Трение качения. Коэффициент трения качения.
- •Вращение твердого тела вокруг неподвижной точки. Число степеней свободы, углы Эйлера.
- •Условия равновесия произвольной системы сил в векторной и аналитической формах. Частные случаи.
- •1. Вращение твердого тела вокруг неподвижной точки. Углы Эйлера.
- •2. Условия равновесия для произвольной простр.Системы сил, а также следствия из этих уравнений.
- •Вторая форма условия равновесия для пороизвольной плоской системы сил:
- •Определение скоростей точек плоской фигуры с помощью мцс.
- •Теорема Вариньона о моменте равнодействующей силы. Пример применения: распределенные силы.
- •1. Опред. V 2-х точек с пом. Мцс.
- •2. Теорема Вариньона.
- •Мгновенный центр ускорений. Частные случаи.
- •Лемма о параллельном переносе силы.
- •1. Мцу. Способы нахождения.
- •2. Лемма о параллельном переносе силы.
- •Векторные и скалярные формулы для скоростей и ускорений точек тела при его вращении вокруг неподвижной точки.
- •Аналитическое выражение для моментов силы относительно осей координат.
- •1. Скорости и ускорения точек тела при его вращении вокруг неподвижной точки.
- •Свободное движение твердого тела. Скорости и ускорения его точек.
- •Связь векторного момента силы относительно точки с моментом силы относительно оси, проходящей через эту точку.
- •Сложное движение точки. Основные понятия и определения. Примеры.
- •Центр системы параллельных сил. Формулы для радиуса-вектора и координат центра системы параллельных сил.
- •Сложное движение точки. Теорема о сложении скоростей. Примеры.
- •Центр тяжести тела. Методы нахождения центра тяжести.
- •1. Сложное движение точки. Основные понятия.
- •Сложное движение точки. Теорема о сложении ускорений – теорема Кориолиса. Ускорение Кориолиса.
- •Лемма о параллельном переносе силы.
- •1. Сложное движение точки. Основные понятия.
- •2. Лемма о параллельном переносе силы.
- •Сложное движение точки. Ускорение Кориолиса. Правило Жуковского. Примеры.
- •Эквивалентность пар. Сложение пар. Условие равновесия системы пар сил.
- •1. Сложное движение точки. Основные понятия.
- •2. Пара сил. ∑ моментов сил, составляющих пару.
- •Сложение вращений твердого тела вокруг пересекающихся осей.
- •Зависимость между главными моментами системы сил относительно двух центров приведения.
- •1. Сложение вращений твердого тела вокруг пересекающихся осей.
- •2. Зависимость между главными моментами сил относительно 2 центров приведения.
- •Определение ускорений точек плоской фигуры при известном положении мцу.
- •Система сходящихся сил. Условия равновесия.
- •1. Определение ускорения точек плоской фигуры с помощью мцу.
- •2. Система сходящихся сил. Условия равновесия.
- •Способы определения углового ускорения при плоском движении твердого тела.
- •Равновесие тела с учетом трения качения. Коэффициент трения качения.
- •1. Способы опред. Угл. Уск. При плоском движении.
- •2. Трение качения. Коэффициент трения качения.
- •Полная и локальная производные вектора. Формула Бура.
- •Центр тяжести тела. Методы определения положения центра тяжести.
- •1. Полная и локальная производная вектора. Формула Бура.
- •2. Центр тяжести тела. Методы нахождения центра тяжести.
- •Пара вращений.
- •Теорема о приведении произвольной системы сил к паре – основная теорема статики.
- •1. Пара вращений.
- •2. Т. О приведении произвольной системы сил к силе и паре сил.
- •Сложение вращений твердого тела вокруг параллельных осей.
- •Инварианты системы сил. Частные случаи приведения системы сил к простейшему виду.
- •1. Сложение вращений твердого тела относительно параллельных осей.
- •2. Инварианты системы тел. Частные случаи приведения.
- •Теорема о проекциях скоростей двух точек твердого тела на прямую, проходящую через эти точки.
- •Главный вектор и главный момент системы сил, формулы для их вычисления.
- •1. Теорема о проекциях двух точек на линию, соединяющую эти точки.
- •2. Главный вектор, момент.
- •Векторные и скалярные формулы для скоростей и ускорений точек тела при его вращении вокруг неподвижной точки.
- •Связь векторного момента силы относительно точки с моментом силы относительно оси, проходящей через эту точку.
- •1. Скорости и ускорения точек тела при его вращении вокруг неподвижной точки.
- •2. Связь между моментом относительно оси и относительно точки.
- •Соотношение между ускорениями двух точек плоской фигуры при плоском движении твердого тела.
- •Главный вектор и главный момент системы сил, формулы для их вычисления.
- •1. Соотн. Между уск. 2-х точек при плоском движении.
- •2. Главный вектор, момент.
2. Инварианты системы тел. Частные случаи приведения.
Инвариант системы сил – векторные и скалярные величины, не зависящие от точки приведения системы сил.
Главный вектор R=∑Fi=const.
Скалярное произведение главного вектора и главного момента LOR=const=FxMx+ FyMy+FzMz.
Доказательство: Умножим обе части выражения (1) на R:
MO1R=
MOR+(O1OxR)R
ПрR(LO1)=
ПрR(LO)=
LO1R∙
∙cos(LO1^R)=
LO2Rcos(LO2^R).
LO1xRx+ LO1yRy +LO1zRz =LO2xRx +LO2yRy +LO2zRz
Приведение к простейшему виду:
MO=0, R0 к равнодействующей, равной R, проходящей через О.
R=0, MO0 к паре с моментом MO (независимо от О).
R0, MO0, MO┴ R к равнодействующей, равной R, проходящей через О1: ОО1=d= |MO| / |R|. Доказательство: R и пара сил с моментом MO лежат в одной плоскости
силы R и R” уравновешиваются, систему можно заменить равнодействующей R’.
MOR0, R0, MO0, R не перпендикулярна MO – приводится к динаме.
Доказательство: Разложим MO на 2 составляющих: M1 и M2. M2 представим в виде пары сил R’ и R”. Силы R и R” уравновешиваются, а M1 перенесем в точку O1 (свободы).
В результате получили винт R’, M1, проходящий через точку О1.
Прямая, проходящая через точку О1 – ось динамы.
Билет №28.
Теорема о проекциях скоростей двух точек твердого тела на прямую, проходящую через эти точки.
Главный вектор и главный момент системы сил, формулы для их вычисления.
1. Теорема о проекциях двух точек на линию, соединяющую эти точки.
При любом движении проекции двух точек на линию, их соединяющую, равны.
Док-во: rB=rA+AB => drB/dt = drA/dt+dAB/dt, но dAB/dt ┴ AB. Проецируем на линию АВ, учитывая, что dAB/dt ┴ AB:
ПрАВ(vB)=ПрАВ(v)A+0.
2. Главный вектор, момент.
Пусть дана система сил (F1, F2,…,Fn).
Главным вектором системы сил называется вектор, равный векторной сумме этих сил.
R=∑Fk.
Rx=∑Fkx; cos(x,R)= Rx/R;
Ry=∑Fky; cos(y,R)= Ry/R;
Rz=∑Fkz; cos(z,R)= Rz/R;
Главный момент системы сил – сумма моментов сил относительно какого-либо полюса (центра приведения).
Lx=∑Mx(Fk)
Билет №29.
Векторные и скалярные формулы для скоростей и ускорений точек тела при его вращении вокруг неподвижной точки.
Связь векторного момента силы относительно точки с моментом силы относительно оси, проходящей через эту точку.
1. Скорости и ускорения точек тела при его вращении вокруг неподвижной точки.
VA=ω×rA. Пусть точка М лежит на мгновенной оси вращения.
i j k
VM=ω×rM= ωx ωy ωz
XM YM ZM
X/ωx=Y/ωy=Z/ωz – мгновенная ось вращения.
aA=dv/dt=dω/dt×rA+ω×drA/dt=ε×rA+ω×vA=aAвр+aAос.
aAвр= ε×rA – вращательное ускорение точки.
aAос= ω×vA – осестремительное ускорение точки.
Формула Ривальса: aAoc=ωvAsin(ω, vA). aвр направлен перпендикулярно плоскости (ε,r) в сторону, откуда переход от ε к r виден против часовой стрелки.
aвр направлен по перпендикуляру к плоскости (ω,v).
2. Связь между моментом относительно оси и относительно точки.
Момент силы F относительно оси z равен проекции на эту ось вектора момента силы F относительно произвольной точки О на этой оси.
Доказательство:
Пусть О – произвольная точка на оси z. Момент силы F относительно точки О перпендикулярен плоскости ОАВ
MO(F)┴(OAB). Пусть угол между MO(F) и осью z равен α. Тогда ПрzMO(F)=2SΔO’A’B’= 2SΔOAB∙cosα => Mz(F) = |MO(F)|cosα.
Ч.т.д.
Билет №30.