
- •6. Режимы работы биполярного транзистора.
- •7. Схемы включения биполярных транзисторов.
- •10.Схемы термостабилизации транзисторов.
- •11. Полевой транзистор, основные характеристики.
- •14. Усилители, классификация, основные требования.
- •20 Дифференциальные усилители.
- •23. Обратные связи в усилителях.
- •24. Операционный усилитель, устройство, параметры, характеристики.
- •25. Типовые применения операционных усилителей.
- •26) Ключевой режим работы биполярного транзистора
- •27) Переходные процессы при переключении транзистора
- •28) Триггеры на дискретных элементах. Схемы и принцип действия
- •29) Мультивибраторы. Схемы и принцип действия
- •30) Генераторы линейно – изменяющегося напряжения
- •41. Погрешности измерения: инструментальные, методические, масштабных преобразователей, абсолютные и относительные
- •42. Погрешности средств измерения: абсолютные, относительные, приведенные, основные и дополнительные, класс точности средств измерения
- •43. Устройство, принцип работы, достоинства и недостатки электроизмерительных приборов магнитоэлектрической системы. Область применения.
- •44. Устройство, принцип работы, достоинства и недостатки электроизмерительных приборов электромагнитной системы. Область применения.
- •45. Устройство, принцип работы, достоинства и недостатки электродинамических и ферродинамических приборов. Область применения
- •52. Схема и принцип действия одинарного моста постоянного тока.
- •53. Схема и принцип действия двойного моста постоянного тока. Устройство двойных мостов постоянного тока
- •54. Схема и принцип действия компенсатора постоянного тока.
- •55. Структурная схема и принцип действия цифрового измерительного прибора.
- •60.Измерение мощности в цепях постоянного тока.
- •61 Измерение сопротивлений. Метод амперметра и вольтметра.
- •66 Измерение магнитного потока
- •68. Преобразователи, их назначение и характеристика.
- •69. Классификация преобразователей.
- •70. Принцип действия преобразователей, область их применения.
- •71) Информационные измерительные системы, классификация.
- •72) Типы и структура интерфейсов информационных измерительных систем
- •73) Роль информационно – измерительной техники в производства
- •74) Классификация средств измерений
- •75) Метрологические характеристики средств измерений.
- •76) Методы измерений
- •77)Классификация измерительных приборов
- •98. Измерение сопротивлений. Метод амперметра и вольтметра.
- •100 Измерение сопротивлений в цепях переменного тока.
Задачи курса, роль электроники в становлении специалиста.
Курс электроники рассматривает очень много различных методов , приборов ,элементов приборов, которые пригодятся специалисту.
Понятие о p – n переходе.
p-n-Перехо́д (n — negative — отрицательный, электронный, p — positive — положительный, дырочный), или электронно-дырочный переход — область пространства на стыке двух полупроводников p- и n-типа, в которой происходит переход от одного типа проводимости к другому. p-n-Переход является основой для полупроводниковых диодов, триодов и других электронных элементов с нелинейной вольт-амперной характеристикой.
Полупроводниковые диоды. Принцип работы, характеристики.
Полупроводниковый диод — полупроводниковый прибор с одним электрическим переходом и двумя выводами (электродами). В отличие от других типов диодов, принцип действия полупроводникового диода основывается на явлении p-n-перехода.
Плоскостные p-n-переходы для полупроводниковых диодов получают методом сплавления, диффузии и эпитаксии.[1]
Вольт-амперная характеристика
Максимально допустимое постоянное обратное напряжение
Максимально допустимое импульсное обратное напряжение
Максимально допустимый постоянный прямой ток
Максимально допустимый импульсный прямой ток
Номинальный постоянный прямой ток
Прямое постоянное напряжение на диоде при номинальном токе
Постоянный обратный ток, указывается при максимально допустимом обратном напряжении
Диапазон рабочих частот
Ёмкость
Пробивное напряжение (для защитных диодов и стабилитронов)
Тепловое сопротивление корпуса при различных вариантах монтажа
Максимально допустимая мощность рассеивания
Принцип действия полупроводникового диода: В основе принципа действия полупроводникового диода — свойства электронно-дырочного перехода, в частности, сильная асимметрия вольт-амперной характеристики относительно нуля. Таким образом различают прямое и обратное включение. В прямом включении диод обладает малым электросопротивлением и хорошо проводит электрический ток. В обратном — при напряжении меньше напряжения пробоя сопротивление очень велико и ток перекрыт. Условное изображение на схемах:
|
Разновидности полупроводниковых диодов.
Выпрямительные диоды предназначены для преобразования переменного тока в постоянный.
Импульсные диоды имеют малую длительность переходных процессов, предназначены для применения в импульсных режимах работы.
Детекторные диоды предназначены для детектирования сигнала
Смесительные диоды предназначены для преобразования высокочастотных сигналов в сигнал промежуточной частоты.
Переключательные диоды предназначены для применения в устройствах управления уровнем сверхвысокочастотной мощности.
Параметрические
Ограничительные диоды предназначены для защиты радио и бытовой аппаратуры от повышениясетевого напряжения.
Умножительные
Настроечные
Генераторные
5. Биполярный транзистор, основные характеристики. Биполярный транзистор — трёхэлектродный полупроводниковый прибор, один из типовтранзистора. Электроды подключены к трём последовательно расположенным слоям полупроводника с чередующимся типом примесной проводимости. По этому способу чередования различают npn и pnp транзисторы (n (negative) — электронный тип примесной проводимости, p (positive) — дырочный). В биполярном транзисторе, в отличие от полевого транзистора, используются заряды одновременно двух типов, носителями которых являются электроны и дырки (от слова «би» — «два»). Схематическое устройство транзистора показано на втором рисунке.
Электрод, подключённый к центральному слою, называют базой, электроды, подключённые к внешним слоям, называют коллектором и эмиттером. На простейшей схеме различия между коллектором и эмиттером не видны. В действительности же главное отличие коллектора — бо́льшая площадь p — n-перехода. Кроме того, для работы транзистора абсолютно необходима малая толщина базы.
Коэффициент передачи по току
Входное сопротивление
Выходная проводимость
Обратный ток коллектор-эмиттер
Время включения
Предельная частота коэффициента передачи тока базы
Обратный ток коллектора
Максимально допустимый ток
Граничная частота коэффициента передачи тока в схеме с общим эмиттером
6. Режимы работы биполярного транзистора.
Рассмотренный выше вариант представляет собой нормальный активный режим работы транзистора. Однако, есть еще несколько комбинаций открытости/закрытости p-n переходов, каждая из которых представляет отдельный режим работы транзистора.
Инверсный активный режим. Здесь открыт переход БК, а ЭБ наоборот закрыт. Усилительные свойства в этом режиме, естественно, хуже некуда, поэтому транзисторы в этом режиме используются очень редко.
Режим насыщения. Оба перехода открыты. Соответственно, основные носители заряда коллектора и эмиттера «бегут» в базу, где активно рекомбинируют с ее основными носителями. Из-за возникающей избыточности носителей заряда сопротивление базы и p-n переходов уменьшается. Поэтому цепь, содержащую транзистор в режиме насыщения можно считать короткозамкнутой, а сам этот радиоэлемент представлять в виде эквипотенциальной точки.
Режим отсечки. Оба перехода транзистора закрыты, т.е. ток основных носителей заряда между эмиттером и коллектором прекращается. Потоки неосновных носителей заряда создают только малые и неуправляемые тепловые токи переходов. Из-за бедности базы и переходов носителями зарядов, их сопротивление сильно возрастает. Поэтому часто считают, что транзистор, работающий в режиме отсечки, представляет собой разрыв цепи.
Барьерный режим В этом режиме база напрямую или через малое сопротивление замкнута с коллектором. Также в коллекторную или эмиттерную цепь включают резистор, который задает ток через транзистор. Таким образом получается эквивалент схемы диода с последовательно включенным сопротивлением. Этот режим очень полезный, так как позволяет схеме работать практически на любой частоте, в большом диапазоне температур и нетребователен к параметрам транзисторов.
7. Схемы включения биполярных транзисторов.
Существует три основные схемы включения транзисторов. При этом один из электродов транзистора является общей точкой входа и выхода каскада. Надо помнить, что под входом (выходом) понимают точки, между которыми действует входное (выходное) переменное напряжение. Основные схемы включения называются схемами с общим эмиттером (ОЭ), общей базой (ОБ) и общим коллектором (ОК). Схема с общим эмиттером (ОЭ). Такая схема изображена на рисунке 1. Во всех книжках написано, что эта схема является наиболее распространненой, т. к. дает наибольшее усиление по мощности.
К
достоинствам схемы ОЭ можно отнести
удобство питания ее от одного источника,
поскольку на базу и коллектор подаются
питающие напряжения одного знака. К
недостаткам относят худшие частотные
и температурные свойства (например,в
сравнении со схемой ОБ). С повышением
частоты усиление в схеме ОЭ снижается.
К тому же, каскад по схеме ОЭ при усилении
вносит значительные искажения. Схема
с общей базой (ОБ). Схема ОБ изображена
на рисунке 2.
Такая схема включения не дает значительного
усиления, но обладает хорошими частотными
и температурными свойствами. Применяется
она не так часто, как схема ОЭ. Для схемы
ОБ фазовый сдвиг между входным и выходным
напряжением отсутствует, то есть фаза
напряжения при усилении не переворачивается.
Кроме того, при усилении схема ОБ вносит
гораздо меньшие искажения, нежели схема
ОЭ.
Схема с общим коллектором (ОК). Схема включения с общим коллектором показана на рисунке 3. Такая схема чаще называется эмиттерным повторителем. Особенность этой схемы в том, что входное напряжение полностью передается обратно на вход, т. е. очень сильна отрицательная обратная связь. Коэффициент усиления по току почти такой же, как и в схеме ОЭ. Коэффициент усиления по напряжению приближается к единице, но всегда меньше ее. В итоге коэффициент усиления по мощности примерно равен ki, т. е. нескольким десяткам