
- •Элементы геометрической оптики
- •Полное внутреннее отражение
- •Линзы и их характеристики
- •Оптическая сила тонкой линзы и построение изображения в линзах
- •Аберрации оптических систем
- •Фотометрия. Энергетические величины фотометрии
- •Световые характеристики фотометрии
- •Вывод законов отражения и преломления света на основе волновой теории.
- •Когерентность и монохроматичность световых волн.
- •Интерференция света.
- •Методы наблюдения интерференции.
- •Расчёт интерференционной картины от 2-х источников.
- •Полосы равного наклона.
- •Полосы равной толщины.
- •К ольца Ньютона.
- •Применение интерференции.
- •Принцип Гюйгенса Френеля.
- •Метод зон Френеля.
- •Дифракция Френеля на круглом отверстии и диске.
- •Дифракция Фраунгофера от щели.
- •Дифракция Фраунгофера на дифракционной решетке.
- •Разрешающая способность спектрального приюора.Критерий Рееля
- •Дисперсия света
- •Нормальная и аномальная дисперсия
- •Элементарная электронная теорема дисперсии
- •Поглощение света
- •Эффект Доплера
- •Естественный и поляризованный свет.
- •Закон Малюса
- •Поляризация света при отражении и преломление на границах двух диэлектриков
- •Двойное лучепреломление
- •Положительные и отрицательные кристаллы.
- •Пластинка λ/4
- •Анализ поляризованного света
- •Искусственная оптическая анизотропия
- •Вращение плоскости поляризации
- •Тепловое излучение и его характеристики
- •Закон кирхгофа
- •Законы стефана — больцмана и смещения вина
- •Получение из ф-лы планка частных законов теплового излучения
- •Температура: радиационная, цветовая, яркостная
- •Вольтамперная характеристика фотоэффекта
- •Законы фотоэффекта и уравнение Эйнштейна
- •Импульс фотона. Давление света
- •Давление света на основе волновой теории
- •Эффект Комптона
- •Единство корпускулярных и волновых свойств света
- •Модели атома по Томсону и Резерфорду
- •Линейчатый спектр атома водорода
- •Постулаты Бора
- •Опыты Франка и Герца
- •Спектр атома водорода по Бору
- •Корпускулярно-волновой дуализм свойств вещества
- •Некоторые свойства волн да Бройля
- •Соотношение неопределенностей
- •Вероятностный подход к отношению микрочастиц
- •Описание микрочастиц с помощью волновой функции
- •Общее уравнение Шредингера
- •Уравнение Шредингера для стационарных состояний
- •61.Движение свободной частицы
- •Частица в одномерной прямоугольной «потенциальной яме» с бесконечно высокими «стенками».
- •Прохождение частицы сквозь потенциальный прогиб.
- •Туннельный эффект
- •Линейный гармонический осциллятор
- •Водородоподобный атом в квантовой механике
- •Квантовые числа
- •Спектр атома водорода
- •70. Спин электрона и спиновое квантовое число
- •71. Поглощение, спонтанное и вынужденное излучение
- •72. Активные среды и типы лазеров
- •73. Принцип работы твердотельного лазера
- •74. Атомные ядра и их описания
- •75. Дефект масс. Энергия связи ядра
- •76. Ядерные силы и модели ядра
- •77. Радиоактивные излучения и их виды
- •78. Закон радиоактивного распада
- •79. Правило смещения
- •82.Приборы для регистрации
- •83. Ядерные реакции и их классификации
- •84.Позейтрон. Β-распад
Вольтамперная характеристика фотоэффекта
Фотоэффект- испускание электронов веществом под действием электромагнитного излучения
Схема для исследования фотоэффекта проста: между катодом и анодом электрической цепи прикладывается разность потенциалов, катод и анод находятся в вакууме, напряжения измеряется вольтметром, при освещении в цепь возникает электрический ток величина которого определяется амперметром.
Зависимость тока от напряжения представлена следующим образом:
Ток насыщения определяется таким значением напряжения U, при котором все электроны испускаемые катодом достигают анода.
Iнас= e N
N- число электронов испускаемое катодом за 1 сек.
U0 -задерживающая разность потенциалов.
При U=U0 ни один из электронов вырванный светом из катода не достигает анода.
Зная
U0
можно
определить
=
eU
, работа совершаемая задерживающей
разностью потенциалов = максимальной
кинетической энергии вылетающих
электронов.
Законы фотоэффекта и уравнение Эйнштейна
Законы фотоэффекта или законы Столетова:
I. Закон Столетова: при фиксированной частоте падающего света число фотоэлектронов, вырываемых из катода в единицу времени, пропорционально интенсивности света (сила фототока насыщения пропорциональна энергетической освещенности Ее катода).
II. Максимальная начальная скорость (максимальная начальная кинетическая энергия) фотоэлектронов не зависит от интенсивности падающего света, а определяется только его частотой v.
III. Для каждого вещества существует красная граница фотоэффекта, т. е. минимальная частота vо света (зависящая от химической природы вещества и состояния его поверхности), ниже которой фотоэффект невозможен.
Уравнение Эйнштейна:
Энергия падающего фотона расходуется на совершение электроном работы выхода А из металла и на сообщение вылетевшему фотоэлектрону кинетической энергии mv2max/2
Это
уравнение выведено на основе квантовой
теории, согласно которой свет поглощается,
распространяется с энергией hv
, при этом Авых
определяется энергией hvo,
где vo=
(
красная граница фотоэффекта)
Если вместо Ек записать выражения для задерживающей разности потенциалов, то получим :
Работа Авых дана чаще всего в электронвольтах, которые применяются для определения малых энергий.
еВ=1,6*10-19 Дж
1еВ- энергия которую приобретает электрон с зарядом 1,6 *10-19 Кл ускорившийся в разности потенциалов в 1В
Импульс фотона. Давление света
Согласно гипотезе световых квантов Эйнштейна, свет испускается, поглощается и распространяется дискретными порциями (квантами), названными фотонами. Энергия фотона E0=hv. Его масса находится из закона взаимосвязи массы и энергии :
Фотон — элементарная частица, которая всегда движется со скоростью света с и имеет массу покоя, равную нулю. Следовательно, масса фотона отличается от массы таких элементарных частиц, как электрон, протон и нейтрон, которые обладают отличной от нуля массой покоя и могут находиться в состоянии покоя.
Импульс фотона р получим, если в общей формуле теории относительности положим массу покоя фотона mо = 0:
(205.2)
Из приведенных рассуждений следует, что фотон, как и любая другая частица, характеризуется энергией, массой и импульсом.
Если фотоны обладают импульсом, то свет, падающий на тело, должен оказывать на него давление. Согласно квантовой теории, давление света на поверхность обусловлено тем, что каждый фотон при соударении с поверхностью передает ей свой импульс.
Рассчитаем с точки зрения квантовой теории световое давление, оказываемое на поверхность тела потоком монохроматического излучения (частота v), падающего перпендикулярно поверхности. Если в единицу времени на единицу площади поверхности тела падает N фотонов, то при коэффициенте отражения света от поверхности тела N фотонов отразится, a (l - )N — поглотится. Каждый поглощенный фотон передает поверхности импульс рg = hv/c, а каждый отраженный — 2 рg = 2hv/c (при отражении импульс фотона изменяется на - рg). Давление света на поверхность равно импульсу, который передают поверхности в 1 с N фотонов:
Nhv = Ee есть энергия всех фотонов, падающих на единицу поверхности в единицу времени, т.e. энергетическая освещенность поверхности , a Ee/c = w — объемная плотность энергии излучения. Поэтому давление, производимое светом при нормальном падении на поверхность,