
- •Элементы геометрической оптики
- •Полное внутреннее отражение
- •Линзы и их характеристики
- •Оптическая сила тонкой линзы и построение изображения в линзах
- •Аберрации оптических систем
- •Фотометрия. Энергетические величины фотометрии
- •Световые характеристики фотометрии
- •Вывод законов отражения и преломления света на основе волновой теории.
- •Когерентность и монохроматичность световых волн.
- •Интерференция света.
- •Методы наблюдения интерференции.
- •Расчёт интерференционной картины от 2-х источников.
- •Полосы равного наклона.
- •Полосы равной толщины.
- •К ольца Ньютона.
- •Применение интерференции.
- •Принцип Гюйгенса Френеля.
- •Метод зон Френеля.
- •Дифракция Френеля на круглом отверстии и диске.
- •Дифракция Фраунгофера от щели.
- •Дифракция Фраунгофера на дифракционной решетке.
- •Разрешающая способность спектрального приюора.Критерий Рееля
- •Дисперсия света
- •Нормальная и аномальная дисперсия
- •Элементарная электронная теорема дисперсии
- •Поглощение света
- •Эффект Доплера
- •Естественный и поляризованный свет.
- •Закон Малюса
- •Поляризация света при отражении и преломление на границах двух диэлектриков
- •Двойное лучепреломление
- •Положительные и отрицательные кристаллы.
- •Пластинка λ/4
- •Анализ поляризованного света
- •Искусственная оптическая анизотропия
- •Вращение плоскости поляризации
- •Тепловое излучение и его характеристики
- •Закон кирхгофа
- •Законы стефана — больцмана и смещения вина
- •Получение из ф-лы планка частных законов теплового излучения
- •Температура: радиационная, цветовая, яркостная
- •Вольтамперная характеристика фотоэффекта
- •Законы фотоэффекта и уравнение Эйнштейна
- •Импульс фотона. Давление света
- •Давление света на основе волновой теории
- •Эффект Комптона
- •Единство корпускулярных и волновых свойств света
- •Модели атома по Томсону и Резерфорду
- •Линейчатый спектр атома водорода
- •Постулаты Бора
- •Опыты Франка и Герца
- •Спектр атома водорода по Бору
- •Корпускулярно-волновой дуализм свойств вещества
- •Некоторые свойства волн да Бройля
- •Соотношение неопределенностей
- •Вероятностный подход к отношению микрочастиц
- •Описание микрочастиц с помощью волновой функции
- •Общее уравнение Шредингера
- •Уравнение Шредингера для стационарных состояний
- •61.Движение свободной частицы
- •Частица в одномерной прямоугольной «потенциальной яме» с бесконечно высокими «стенками».
- •Прохождение частицы сквозь потенциальный прогиб.
- •Туннельный эффект
- •Линейный гармонический осциллятор
- •Водородоподобный атом в квантовой механике
- •Квантовые числа
- •Спектр атома водорода
- •70. Спин электрона и спиновое квантовое число
- •71. Поглощение, спонтанное и вынужденное излучение
- •72. Активные среды и типы лазеров
- •73. Принцип работы твердотельного лазера
- •74. Атомные ядра и их описания
- •75. Дефект масс. Энергия связи ядра
- •76. Ядерные силы и модели ядра
- •77. Радиоактивные излучения и их виды
- •78. Закон радиоактивного распада
- •79. Правило смещения
- •82.Приборы для регистрации
- •83. Ядерные реакции и их классификации
- •84.Позейтрон. Β-распад
Получение из ф-лы планка частных законов теплового излучения
В области малых частот, т. е. при hv << kT (энергия кванта очень мала по сравнению с энергией теплового движения kT), формула Планка совпадает с формулой Рэлея — Джинса. Для доказательства этого разложим экспоненциальную функцию в ряд, ограничившись для рассматриваемого случая двумя первыми членами:
Подставляя последнее выражение в формулу Планка, найдем, что
т. е. получили формулу Рэлея — Джинса.
Из
формулы Планка можно получить закон
Стефана — Больцмана.
Введем безразмерную переменную x = hv/(kT); dx = hdv/(kT); dv = kTdx/h. Формула для Re, преобразуется к виду
. Таким образом, действительно формула Планка позволяет получить закон Стефана — Больцмана. Кроме того, подстановка числовых значений k, с и h дает для постоянной Стефана — Больцмана значение, хорошо согласующееся с экспериментальными данными. Закон смещения Вина получим с помощью:
откуда
Значение max, при котором функция достигает максимума, найдем, приравняв нулю эту производную. Тогда, введя x = hc/(kTlmax), получим уравнение
Решение этого трансцендентного уравнения методом последовательных приближений дает х=4,965. Следовательно, hc/(kTlmax) = 4,965, откуда
т. е. получили закон смещения Вина.
Из формулы Планка, зная универсальные постоянные h, k и с, можно вычислить постоянные Стефана — Больцмана а и Вина b. С другой стороны, зная экспериментальные значения а и b, можно вычислить значения А и k (именно так и было впервые найдено числовое значение постоянной Планка).
Температура: радиационная, цветовая, яркостная
Методы измерения высоких температур, использующие зависимость спектральной плотности энергетической светимости или интегральной энергетической светимости тел от температуры, называется оптической пирометрией.
Пирометры- приборы служащие для измерения температуры тела по интенсивности их теплового излучения в оптическом диапазоне спектра.
Различают радиационную, цветовую и яркостную температуры.
1. Радиационная температура — это такая температура черного тела, при которой его энергетическая светимость Re, равна энергетической светимости RT исследуемого тела. Согласно закону Стефана — Больцмана радиационная температура опредиляется:
Радиационная температура Тр тела всегда меньше его истинной температуры Т, т.к излучательная способность серого тела равна:
Так как Ат < 1, то Тр < Т, т. е. истинная температура тела всегда выше радиационной.
2. Цветовая температурa. Для серых тел (или тел, близких к ним по свойствам) спектральная плотность энергетической светимости
где AT = const < l. Следовательно, распределение энергии в спектре излучения серого тела такое же, как и в спектре черного тела, имеющего ту же температуру, поэтому к серым телам применим закон смещения Вина, т.е. цветовая температура будет определятся через максимальную излучательную способность.
Для серых тел цветовая температура совпадает с истинной.
3. Яркостная температуря Тя — это температура черного тела, при которой для определенной длины волны его спектральная плотность энергетической светимости равна спектральной плотности энергетической светимости исследуемого тела, т. е.
где Т—истинная температура тела.
По закону Кирхгофа , для исследуемого тела при длине волны l
Так как для нечерных тел А < 0, то rl,Tя < rl,T и, следовательно, ТЯ < Т, т.е. истинная температура тела всегда выше яркостной.