
- •1.Причины возникновения переходных процессов
- •Основные методы анализа переходных процессов в линейных цепях:
- •2. Законы коммутации
- •8.Алгоритм расчета переходных процессов классическим методом. Определение степени характеристического уравнении. Общая методика расчета переходных процессов классическим методом
- •9. Составление характеристического уравнения по выражению для входного сопротивления цепи.
- •10. Переходный процесс при подключении r-l цепи к источнику постоянной эдс
- •11. Переходный процесс при отключении катушки индуктивности с параллельным разрядным сопротивлением.
- •13. Включение r-l цепи на синусоидальное напряжение.
- •15. Переходный процесс при включении r-c цепи на постоянное напряжение.
- •16. Разрядка конденсатора.
- •Переходные процессы при подключении последовательной
- •19. Апериодический разряд конденсатора на цепь r-l
- •На рис. 5 представлены качественные кривые и , соответствующие колебательному переходному процессу при .
- •22. Включение r-l-c на постоянное напряжение
- •25. Понятие переходной проводимости и переходной функции.
- •Переходная функция по напряжению
- •26. Расчет переходных процессов с помощью интеграла Дюамеля
- •27. Применение интеграла Дюамеля при сложной форме напряжения
- •28. Закон Ома в операторной форме.
- •29. Первый закон Кирхгофа в опер форме
- •30. Второй закон Кирхгофа в опер форме
- •31. Последовательность расчета операторным методом
- •Последовательность расчета переходных процессов операторным методом
- •32. Теорема разложения. Формула разложения
- •33. Случаи уточнения формулы разложения
- •34. Расчет переходных процессов операторным методом при ненулевых начальных условиях.
- •35. Некорректные начальные условия. Первый и второй законы коммутации при некорректных начальных условиях.
- •36. Метод переменных состояний
- •37. Явный метод Эйлера при использовании метода переменных состояний
- •38. Метод Рунге-Кутта при использовании метода переменных состояний
- •39. Понятие о цепи с распределенными параметрами
- •40. Первичные параметры
- •41. Уравнение однородной длинной линии
- •42. Решение уравнений однородной длинной линии при установившимся синусоидальном режиме.
- •43. Вторичные параметры длинной линии
- •44. Основные характеристики бегущей волны. Графическое изображение прямой и обратной волны.
- •45. Уравнение однородной линии с гиперболическими функциями
- •47. Коэффициент отражения длинной линии
- •49, Линия включенная на согласованную нагрузку
- •50. Линия без искажения
- •51. Определение параметров длинной линии из опытов хх и кз
- •52. Линия без потерь. Уравнение линии без потерь.
- •53. Линия без потерь., согласованная с нагрузкой.
- •54. Линия без потерь, замкнутая на конце. Стоячие волны. Узлы и пучности.
- •55. Линия без потерь, разомкнутая на конце.
- •56. Линия без потерь нагруженная на реактивное сопротивление
- •57. Согласованная линия с нагрузкой. Короткозамкнутый шлейф. Четвертьволновый трансформатор.
- •58. Применение линии без потерь. Длинная линия как 4-х полюсник. Цепная схема.
- •Уравнения длинной линии как четырехполюсника
- •Уравнения переходных процессов в цепях с распределенными параметрами
- •60. Физический смысл решения уравнений переходных процессов в цепях . Энергия электрического и магнитного полей. Волна с прямоугольным фронтом.
- •61. Переходный процесс при включении на постоянное напряжение однородной линии.
- •62. Включение на постоянное напряжение линии нагруженной на активное сопротивление
- •63. Включение на постоянное напряжение разомкнутой на конце линии.
- •64. Включение на постоянное напряжение короткозамкнутой линии
- •73. Включение и отключение нагрузки в середине линии
- •Правило удвоения волны
- •74. Нелинейные элементы и их характеристики. Примеры практического применения нелинейных элементов
- •75. Управляемые нелинейные элементы. Статическое и дифференциальное сопротивление. Нелинейные электрические цепи постоянного тока
- •Параметры нелинейных резисторов
- •76. Графические методы расчета нелинейных электрических цепей. Последовательное и параллельное соединение элементов. Графические методы расчета
- •77. Расчет нелинейной цепи при смешанном соединении элементов графически Графические методы расчета
- •78. Расчет нелинейной цепи методом 2-х узлов.
- •79. Замена нелинейного сопротивления эквивалентным линейным сопротивлением и эдс
- •80. Расчет нелинейной цепи на основе теоремы об активном двухполюснике.
- •81. Понятие магнитной цепи. Основные величины для расчета магнитных цепей.
- •82. Индукционное и электродинамическое действия магнитного поля. Применение электромагнитных устройств.
- •83. Магнитомягкие и магнитотвердые материалы Магнитомягкие и магнитотвердые материалы
- •84. Первый и второй законы Кирхгофа для магнитных цепей Законы Кирхгофа и Ома для магнитных цепей
- •85. Понятие о магнитном сопротивлении и магнитной проводимости.
- •86. Вебер-Амперная характеристика. Аналогия электрических и магнитных цепей.
- •Вебер-Амперная характеритиска
- •87. Расчет магнитных цепей. Разветвленная цепь
- •2. “Обратная” задача для разветвленной магнитной цепи
- •88. Методы расчета магнитных цепей. Прямая и обратная задачи.
- •89. Магнитная цепь с постоянным магнитом. Особенности расчета.
- •90. Катушка с магнитопроводом на переменном токе как нелинейный индуктивный элемент. Метод эквивалентных синусоид.
- •91. Уравнение электрического состояния, векторная диаграмма и схема замещения катушки.
- •92. Последовательная и параллельная схемы замещения катушки.
- •93. Феррорезонанс при параллельном соединении катушки с ферромагнитным сердечником и конденсатора.
- •94. Феррорезонанс при параллельном соединении катушки и конденсатора.
- •95. Ферромагнитные стабилизаторы напряжения.
- •96. Катушка с ферромагнитным сердечником при одновременном намагничивании постоянным и переменным током.
- •97. Дроссель насыщения. Магнитный усилитель
- •98. Расчет переходного процесса в нелинейной цепи методом условной линеаризации
- •99. Расчет методом кусочно-линейной аппроксимации
- •100. Изображение процессов на фазовой плоскости.
10. Переходный процесс при подключении r-l цепи к источнику постоянной эдс
Такие процессы имеют место, например, при подключении к источнику питания электромагнитов, трансформаторов, электрических двигателей и т.п.
Рассмотрим два случая:
а)
б)
.
Согласно рассмотренной методике для тока в цепи на рис. 2 можно записать
|
(3) |
Тогда для первого случая принужденная составляющая тока
|
(4) |
Характеристическое уравнение
,
откуда
и
постоянная времени
.
Таким образом,
|
(5) |
Подставляя (4) и (5) в соотношение (3), запишем
.
В
соответствии с первым законом коммутации
.
Тогда
,
откуда
.
Таким образом, ток в цепи в переходном процессе описывается уравнением
,
а напряжение на катушке индуктивности – выражением
.
Качественный
вид кривых
и
,
соответствующих полученным решениям,
представлен на рис. 3.
11. Переходный процесс при отключении катушки индуктивности с параллельным разрядным сопротивлением.
При
размыкании ключа в цепи на рис. 5
принужденная составляющая тока через
катушку индуктивности
.
Характеристическое уравнение
,
откуда
и
.
В соответствии с первым законом коммутации
.
Таким образом, выражение для тока в переходном режиме
и напряжение на катушке индуктивности
.
(7)
Анализ
(7) показывает, что при размыкании цепей,
содержащих индуктивные элементы, могут
возникать большие перенапряжения,
которые без принятия специальных мер
могут вывести аппаратуру из строя.
Действительно, при
модуль напряжения на катушке индуктивности
в момент коммутации будет во много раз
превышать напряжение источника:
.
При отсутствии гасящего резистора R
указанное напряжение прикладывается
к размыкающимся контактам ключа, в
результате чего между ними возникает
дуга.
13. Включение r-l цепи на синусоидальное напряжение.
,
где
.
Отсюда
.
Выражение свободной составляющей не зависит от типа источника напряжения. Следовательно,
.
Поскольку , то
.
Таким образом, окончательно получаем
|
(6) |
Анализ полученного выражения (6) показывает:
При начальной фазе напряжения
постоянная интегрирования А=0. Таким образом, в этом случае коммутация не повлечет за собой переходного процесса, и в цепи сразу возникнет установившийся режим.
При
свободная составляющая максимальна по модулю. В этом случае ток переходного процесса достигает своей наибольшей величины.
Если
значительна
по величине, то за полпериода свободная
составляющая существенно не уменьшается.
В этом случае максимальная величина
тока переходного процесса
может
существенно превышать амплитуду
тока установившегося
режима. Как видно из
рис. 4, где
,
максимум тока имеет место примерно
через
.
В пределе при
.
Таким
образом, для линейной цепи максимальное
значение тока переходного режима не
может превышать удвоенной амплитуды
принужденного тока:
.
Аналогично
для линейной цепи с конденсатором: если
в момент коммутации принужденное
напряжение равно своему амплитудному
значению и постоянная времени
цепи
достаточно велика, то примерно через
половину периода напряжение на
конденсаторе достигает своего
максимального значения
,
которое не может превышать удвоенной
амплитуды принужденного напряжения:
.