
- •1.Причины возникновения переходных процессов
- •Основные методы анализа переходных процессов в линейных цепях:
- •2. Законы коммутации
- •8.Алгоритм расчета переходных процессов классическим методом. Определение степени характеристического уравнении. Общая методика расчета переходных процессов классическим методом
- •9. Составление характеристического уравнения по выражению для входного сопротивления цепи.
- •10. Переходный процесс при подключении r-l цепи к источнику постоянной эдс
- •11. Переходный процесс при отключении катушки индуктивности с параллельным разрядным сопротивлением.
- •13. Включение r-l цепи на синусоидальное напряжение.
- •15. Переходный процесс при включении r-c цепи на постоянное напряжение.
- •16. Разрядка конденсатора.
- •Переходные процессы при подключении последовательной
- •19. Апериодический разряд конденсатора на цепь r-l
- •На рис. 5 представлены качественные кривые и , соответствующие колебательному переходному процессу при .
- •22. Включение r-l-c на постоянное напряжение
- •25. Понятие переходной проводимости и переходной функции.
- •Переходная функция по напряжению
- •26. Расчет переходных процессов с помощью интеграла Дюамеля
- •27. Применение интеграла Дюамеля при сложной форме напряжения
- •28. Закон Ома в операторной форме.
- •29. Первый закон Кирхгофа в опер форме
- •30. Второй закон Кирхгофа в опер форме
- •31. Последовательность расчета операторным методом
- •Последовательность расчета переходных процессов операторным методом
- •32. Теорема разложения. Формула разложения
- •33. Случаи уточнения формулы разложения
- •34. Расчет переходных процессов операторным методом при ненулевых начальных условиях.
- •35. Некорректные начальные условия. Первый и второй законы коммутации при некорректных начальных условиях.
- •36. Метод переменных состояний
- •37. Явный метод Эйлера при использовании метода переменных состояний
- •38. Метод Рунге-Кутта при использовании метода переменных состояний
- •39. Понятие о цепи с распределенными параметрами
- •40. Первичные параметры
- •41. Уравнение однородной длинной линии
- •42. Решение уравнений однородной длинной линии при установившимся синусоидальном режиме.
- •43. Вторичные параметры длинной линии
- •44. Основные характеристики бегущей волны. Графическое изображение прямой и обратной волны.
- •45. Уравнение однородной линии с гиперболическими функциями
- •47. Коэффициент отражения длинной линии
- •49, Линия включенная на согласованную нагрузку
- •50. Линия без искажения
- •51. Определение параметров длинной линии из опытов хх и кз
- •52. Линия без потерь. Уравнение линии без потерь.
- •53. Линия без потерь., согласованная с нагрузкой.
- •54. Линия без потерь, замкнутая на конце. Стоячие волны. Узлы и пучности.
- •55. Линия без потерь, разомкнутая на конце.
- •56. Линия без потерь нагруженная на реактивное сопротивление
- •57. Согласованная линия с нагрузкой. Короткозамкнутый шлейф. Четвертьволновый трансформатор.
- •58. Применение линии без потерь. Длинная линия как 4-х полюсник. Цепная схема.
- •Уравнения длинной линии как четырехполюсника
- •Уравнения переходных процессов в цепях с распределенными параметрами
- •60. Физический смысл решения уравнений переходных процессов в цепях . Энергия электрического и магнитного полей. Волна с прямоугольным фронтом.
- •61. Переходный процесс при включении на постоянное напряжение однородной линии.
- •62. Включение на постоянное напряжение линии нагруженной на активное сопротивление
- •63. Включение на постоянное напряжение разомкнутой на конце линии.
- •64. Включение на постоянное напряжение короткозамкнутой линии
- •73. Включение и отключение нагрузки в середине линии
- •Правило удвоения волны
- •74. Нелинейные элементы и их характеристики. Примеры практического применения нелинейных элементов
- •75. Управляемые нелинейные элементы. Статическое и дифференциальное сопротивление. Нелинейные электрические цепи постоянного тока
- •Параметры нелинейных резисторов
- •76. Графические методы расчета нелинейных электрических цепей. Последовательное и параллельное соединение элементов. Графические методы расчета
- •77. Расчет нелинейной цепи при смешанном соединении элементов графически Графические методы расчета
- •78. Расчет нелинейной цепи методом 2-х узлов.
- •79. Замена нелинейного сопротивления эквивалентным линейным сопротивлением и эдс
- •80. Расчет нелинейной цепи на основе теоремы об активном двухполюснике.
- •81. Понятие магнитной цепи. Основные величины для расчета магнитных цепей.
- •82. Индукционное и электродинамическое действия магнитного поля. Применение электромагнитных устройств.
- •83. Магнитомягкие и магнитотвердые материалы Магнитомягкие и магнитотвердые материалы
- •84. Первый и второй законы Кирхгофа для магнитных цепей Законы Кирхгофа и Ома для магнитных цепей
- •85. Понятие о магнитном сопротивлении и магнитной проводимости.
- •86. Вебер-Амперная характеристика. Аналогия электрических и магнитных цепей.
- •Вебер-Амперная характеритиска
- •87. Расчет магнитных цепей. Разветвленная цепь
- •2. “Обратная” задача для разветвленной магнитной цепи
- •88. Методы расчета магнитных цепей. Прямая и обратная задачи.
- •89. Магнитная цепь с постоянным магнитом. Особенности расчета.
- •90. Катушка с магнитопроводом на переменном токе как нелинейный индуктивный элемент. Метод эквивалентных синусоид.
- •91. Уравнение электрического состояния, векторная диаграмма и схема замещения катушки.
- •92. Последовательная и параллельная схемы замещения катушки.
- •93. Феррорезонанс при параллельном соединении катушки с ферромагнитным сердечником и конденсатора.
- •94. Феррорезонанс при параллельном соединении катушки и конденсатора.
- •95. Ферромагнитные стабилизаторы напряжения.
- •96. Катушка с ферромагнитным сердечником при одновременном намагничивании постоянным и переменным током.
- •97. Дроссель насыщения. Магнитный усилитель
- •98. Расчет переходного процесса в нелинейной цепи методом условной линеаризации
- •99. Расчет методом кусочно-линейной аппроксимации
- •100. Изображение процессов на фазовой плоскости.
60. Физический смысл решения уравнений переходных процессов в цепях . Энергия электрического и магнитного полей. Волна с прямоугольным фронтом.
Физический смысл частного решения уравнения в цепях – это новый установившийся режим, к которому будет стремиться схема после коммутации под действием источников. Поэтому частное решение ЛНДУ называют принужденной составляющей режима. Общее решение ЛОДУ физического смысла не имеет. В противоположность принужденной составляющей, его называют свободной составляющей переходного процесса. Свободная составляющая записывается в виде суммы слагаемых, число и вид которых определяются корнями характеристического уравнения.
После записи решения необходимо рассчитать произвольные постоянные, вошедшие в выражение общего решения. Это можно сделать, если известны начальные условия. Начальные условия – это значения искомой функции времени и необходимого числа её производных по времени в начале переходного процесса, т.е. при t=0.
П
ри
замыкании рубильника (см. рис. 2) напряжение
в начале линии сразу же достигает
величины
,
и возникают прямые волны прямоугольной
формы напряжения
и тока
,
перемещающиеся вдоль линии со скоростью
V
(см. рис. 3,а).
Во всех точках линии, до которых волна
еще не дошла, напряжение и ток равны
нулю. Точка, ограничивающая участок
линии, до которого дошла волна, называется
фронтом волны.
В рассматриваемом
случае во всех точках линии, пройденных
фронтом волны, напряжение равно
,
а ток -
.
Отметим, что в реальных условиях форма волны, зависящая от внутреннего сопротивления источника, параметров линии и т.п., всегда в большей или меньшей степени отличается от прямоугольной.
61. Переходный процесс при включении на постоянное напряжение однородной линии.
При замыкании рубильника (см. рис. 2) напряжение в начале линии сразу же достигает величины , и возникают прямые волны прямоугольной формы напряжения и тока , перемещающиеся вдоль линии со скоростью V (см. рис. 3,а). Во всех точках линии, до которых волна еще не дошла, напряжение и ток равны нулю. Точка, ограничивающая участок линии, до которого дошла волна, называется фронтом волны. В рассматриваемом случае во всех точках линии, пройденных фронтом волны, напряжение равно , а ток - .
О
тметим,
что в реальных условиях форма волны,
зависящая от внутреннего сопротивления
источника, параметров линии и т.п., всегда
в большей или меньшей степени отличается
от прямоугольной.
Кроме того, при
подключении к линии источника с другим
законом изменения напряжения форма
волны будет иной. Например, при
экспоненциальном характере изменения
напряжения источника (рис. 4,а) волна
будет иметь форму на рис. 4,б.
В рассматриваемом примере с прямоугольной волной напряжения при первом пробеге волны напряжения и тока (см. рис. 3,а) независимо от нагрузки имеют значения соответственно и , что связано с тем, что волны еще не дошли до конца линии, и, следовательно, условия в конце линии не могут влиять на процесс.
В момент времени волны напряжения и тока доходят до конца линии длиной l, и нарушение однородности обусловливает появление обратных (отраженных) волн. Поскольку в конце линия разомкнута, то
,
откуда и .
В результате (см. рис. 3,б) напряжение в линии, куда дошел фронт волны, удваивается, а ток спадает до нуля.
В момент времени , обратная волна напряжения, обусловливающая в линии напряжение , приходит к источнику, поддерживающему напряжение . В результате возникает волна напряжения и соответствующая волне тока (см. рис. 3,в).