
- •1.Причины возникновения переходных процессов
- •Основные методы анализа переходных процессов в линейных цепях:
- •2. Законы коммутации
- •8.Алгоритм расчета переходных процессов классическим методом. Определение степени характеристического уравнении. Общая методика расчета переходных процессов классическим методом
- •9. Составление характеристического уравнения по выражению для входного сопротивления цепи.
- •10. Переходный процесс при подключении r-l цепи к источнику постоянной эдс
- •11. Переходный процесс при отключении катушки индуктивности с параллельным разрядным сопротивлением.
- •13. Включение r-l цепи на синусоидальное напряжение.
- •15. Переходный процесс при включении r-c цепи на постоянное напряжение.
- •16. Разрядка конденсатора.
- •Переходные процессы при подключении последовательной
- •19. Апериодический разряд конденсатора на цепь r-l
- •На рис. 5 представлены качественные кривые и , соответствующие колебательному переходному процессу при .
- •22. Включение r-l-c на постоянное напряжение
- •25. Понятие переходной проводимости и переходной функции.
- •Переходная функция по напряжению
- •26. Расчет переходных процессов с помощью интеграла Дюамеля
- •27. Применение интеграла Дюамеля при сложной форме напряжения
- •28. Закон Ома в операторной форме.
- •29. Первый закон Кирхгофа в опер форме
- •30. Второй закон Кирхгофа в опер форме
- •31. Последовательность расчета операторным методом
- •Последовательность расчета переходных процессов операторным методом
- •32. Теорема разложения. Формула разложения
- •33. Случаи уточнения формулы разложения
- •34. Расчет переходных процессов операторным методом при ненулевых начальных условиях.
- •35. Некорректные начальные условия. Первый и второй законы коммутации при некорректных начальных условиях.
- •36. Метод переменных состояний
- •37. Явный метод Эйлера при использовании метода переменных состояний
- •38. Метод Рунге-Кутта при использовании метода переменных состояний
- •39. Понятие о цепи с распределенными параметрами
- •40. Первичные параметры
- •41. Уравнение однородной длинной линии
- •42. Решение уравнений однородной длинной линии при установившимся синусоидальном режиме.
- •43. Вторичные параметры длинной линии
- •44. Основные характеристики бегущей волны. Графическое изображение прямой и обратной волны.
- •45. Уравнение однородной линии с гиперболическими функциями
- •47. Коэффициент отражения длинной линии
- •49, Линия включенная на согласованную нагрузку
- •50. Линия без искажения
- •51. Определение параметров длинной линии из опытов хх и кз
- •52. Линия без потерь. Уравнение линии без потерь.
- •53. Линия без потерь., согласованная с нагрузкой.
- •54. Линия без потерь, замкнутая на конце. Стоячие волны. Узлы и пучности.
- •55. Линия без потерь, разомкнутая на конце.
- •56. Линия без потерь нагруженная на реактивное сопротивление
- •57. Согласованная линия с нагрузкой. Короткозамкнутый шлейф. Четвертьволновый трансформатор.
- •58. Применение линии без потерь. Длинная линия как 4-х полюсник. Цепная схема.
- •Уравнения длинной линии как четырехполюсника
- •Уравнения переходных процессов в цепях с распределенными параметрами
- •60. Физический смысл решения уравнений переходных процессов в цепях . Энергия электрического и магнитного полей. Волна с прямоугольным фронтом.
- •61. Переходный процесс при включении на постоянное напряжение однородной линии.
- •62. Включение на постоянное напряжение линии нагруженной на активное сопротивление
- •63. Включение на постоянное напряжение разомкнутой на конце линии.
- •64. Включение на постоянное напряжение короткозамкнутой линии
- •73. Включение и отключение нагрузки в середине линии
- •Правило удвоения волны
- •74. Нелинейные элементы и их характеристики. Примеры практического применения нелинейных элементов
- •75. Управляемые нелинейные элементы. Статическое и дифференциальное сопротивление. Нелинейные электрические цепи постоянного тока
- •Параметры нелинейных резисторов
- •76. Графические методы расчета нелинейных электрических цепей. Последовательное и параллельное соединение элементов. Графические методы расчета
- •77. Расчет нелинейной цепи при смешанном соединении элементов графически Графические методы расчета
- •78. Расчет нелинейной цепи методом 2-х узлов.
- •79. Замена нелинейного сопротивления эквивалентным линейным сопротивлением и эдс
- •80. Расчет нелинейной цепи на основе теоремы об активном двухполюснике.
- •81. Понятие магнитной цепи. Основные величины для расчета магнитных цепей.
- •82. Индукционное и электродинамическое действия магнитного поля. Применение электромагнитных устройств.
- •83. Магнитомягкие и магнитотвердые материалы Магнитомягкие и магнитотвердые материалы
- •84. Первый и второй законы Кирхгофа для магнитных цепей Законы Кирхгофа и Ома для магнитных цепей
- •85. Понятие о магнитном сопротивлении и магнитной проводимости.
- •86. Вебер-Амперная характеристика. Аналогия электрических и магнитных цепей.
- •Вебер-Амперная характеритиска
- •87. Расчет магнитных цепей. Разветвленная цепь
- •2. “Обратная” задача для разветвленной магнитной цепи
- •88. Методы расчета магнитных цепей. Прямая и обратная задачи.
- •89. Магнитная цепь с постоянным магнитом. Особенности расчета.
- •90. Катушка с магнитопроводом на переменном токе как нелинейный индуктивный элемент. Метод эквивалентных синусоид.
- •91. Уравнение электрического состояния, векторная диаграмма и схема замещения катушки.
- •92. Последовательная и параллельная схемы замещения катушки.
- •93. Феррорезонанс при параллельном соединении катушки с ферромагнитным сердечником и конденсатора.
- •94. Феррорезонанс при параллельном соединении катушки и конденсатора.
- •95. Ферромагнитные стабилизаторы напряжения.
- •96. Катушка с ферромагнитным сердечником при одновременном намагничивании постоянным и переменным током.
- •97. Дроссель насыщения. Магнитный усилитель
- •98. Расчет переходного процесса в нелинейной цепи методом условной линеаризации
- •99. Расчет методом кусочно-линейной аппроксимации
- •100. Изображение процессов на фазовой плоскости.
56. Линия без потерь нагруженная на реактивное сопротивление
57. Согласованная линия с нагрузкой. Короткозамкнутый шлейф. Четвертьволновый трансформатор.
58. Применение линии без потерь. Длинная линия как 4-х полюсник. Цепная схема.
;
(11)
.
(12)
Уравнения длинной линии как четырехполюсника
В соответствии с (11) и (12) напряжения и токи в начале и в конце линии связаны между собой соотношениями
;
.
Эти уравнения
соответствуют уравнениям симметричного
четырехполюсника, коэффициенты которого
;
и
;
при этом условие
выполняется.
Указанное означает, что к длинным линиям могут быть применены элементы теории четырехполюсников, и, следовательно, как всякий симметричный четырехполюсник, длинная линия может быть представлена симметричной Т- или П- образной схемами замещения.
59. Причины возникновения переходных процессов в цепях с распределенными параметрами. Исходные уравнения и их решения. Фронт волны. Падающая, отраженная и преломленная волны.
Переходные процессы в цепях с распределенными параметрами
Переходные процессы в цепях с распределенными параметрами имеют характер блуждающих волн, распространяющихся по цепи в различных направлениях. Эти волны могут претерпевать многократные отражения от стыков различных линий, от узловых точек включения нагрузки и т.д. В результате наложения этих волн картина процессов в цепи может оказаться достаточно сложной. При этом могут возникнуть сверхтоки и перенапряжения, опасные для оборудования.
Переходные процессы в цепях с распределенными параметрами возникают при различных изменениях режимов их работы: включении-отключении нагрузки, источников энергии, подключении новых участков линии и т.д. Причиной переходных процессов в длинных линиях могут служить грозовые разряды.
Уравнения переходных процессов в цепях с распределенными параметрами
При рассмотрении схемы замещения цепи с распределенными параметрами были получены дифференциальные уравнения в частных производных
;
(5)
.
(6)
Их
интегрирование с учетом потерь
представляет собой достаточно сложную
задачу. В этой связи будем считать цепь
линией без потерь, т.е. положим
и
.
Такое допущение возможно для линий с
малыми потерями, а также при анализе
начальных стадий переходных процессов,
часто наиболее значимых в отношении
перенапряжений и сверхтоков.
С учетом указанного от соотношений (5) и (6) переходим к уравнениям
(7)
(8)
Для получения уравнения (7) относительно одной переменной продифференцируем (7) по х, а (8) – по t:
;
(9)
.
(10)
Учитывая,
что для линии без потерь
,
после подстановки соотношения (10) в (9)
получим
.
(11)
Аналогично получается уравнение для тока
.
(12)
Волновым уравнениям (11) и (12) удовлетворяют решения
;
.
Как и ранее, прямые и обратные волны напряжения и тока связаны между собой законом Ома для волн
и
,
где .
При расчете переходных процессов следует помнить:
В любой момент времени напряжение и ток в любой точке линии рассматриваются как результат наложения прямой и обратной волн этих переменных на соответствующие величины предшествующего режима.
Всякое изменение режима работы цепи с распределенными параметрами обусловливает появление новых волн, накладываемых на существующий режим.
Для каждой волны в отдельности выполняется закон Ома для волн.
Как указывалось, переходный процесс в цепях с распределенными параметрами характеризуется наложением многократно отраженных волн. Рассмотрим многократные отражения для двух наиболее характерных случаев: подключение источника постоянного напряжения к разомкнутой и короткозамкнутой линии.
При
замыкании рубильника (см. рис. 2) напряжение
в начале линии сразу же достигает
величины
,
и возникают прямые волны прямоугольной
формы напряжения
и тока
,
перемещающиеся вдоль линии со скоростью
V
(см. рис. 3,а).
Во всех точках линии, до которых волна
еще не дошла, напряжение и ток равны
нулю. Точка, ограничивающая участок
линии, до которого дошла волна, называется
фронтом волны.
В рассматриваемом
случае во всех точках линии, пройденных
фронтом волны, напряжение равно
,
а ток -
.
Отметим, что в реальных условиях форма волны, зависящая от внутреннего сопротивления источника, параметров линии и т.п., всегда в большей или меньшей степени отличается от прямоугольной.
Кроме того, при
подключении к линии источника с другим
законом изменения напряжения форма
волны будет иной. Например, при
экспоненциальном характере изменения
напряжения источника (рис. 4,а) волна
будет иметь форму на рис. 4,б.
В рассматриваемом примере с прямоугольной волной напряжения при первом пробеге волны напряжения и тока (см. рис. 3,а) независимо от нагрузки имеют значения соответственно и , что связано с тем, что волны еще не дошли до конца линии, и, следовательно, условия в конце линии не могут влиять на процесс.
В
момент времени
волны напряжения и тока доходят до конца
линии длиной l,
и нарушение однородности обусловливает
появление обратных (отраженных) волн.
Поскольку в конце линия разомкнута, то
,
откуда
и
.
В результате (см. рис. 3,б) напряжение в линии, куда дошел фронт волны, удваивается, а ток спадает до нуля.
В
момент времени
,
обратная волна напряжения, обусловливающая
в линии напряжение
,
приходит к источнику, поддерживающему
напряжение
.
В результате возникает волна напряжения
и соответствующая волне тока
(см. рис. 3,в).
В
момент времени
волны напряжения и тока подойдут к концу
линии. В связи с ХХ
и
(см. рис. 3,г). Когда эти волны достигнут
начала линии, напряжение и ток в ней
окажутся равными нулю. Следовательно,
с этого момента переходный процесс
будет повторяться с периодичностью
.
В
случае короткозамкнутой на конце линии
в интервале времени
картина процесса соответствует
рассмотренной выше. При
,
поскольку в конце линии
и
,
что приведет к возрастанию тока в линии
за фронтом волны до величины
.
При
от источника к концу линии будет двигаться
волна напряжения
и соответствующая ей волна тока
,
обусловливающая ток в линии, равный
,
и т. д. Таким образом, при каждом пробеге
волны ток в линии возрастает на
.
Отметим, что в реальном случае, т.е. при наличии потерь мощности, напряжение в линии в режиме ХХ постепенно выйдет на уровень, определяемый напряжением источника, а ток в режиме КЗ ограничится активным сопротивлением и проводимостью линии, а также внутренним сопротивлением источника.