Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
LR_3_Oxi_Metod.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
1.17 Mб
Скачать

Методические указания

к лабораторной работе по биофизике

Исследование оптических свойств биологических тканей

и их фантомов спектрофотометрическим методом

Цель работы:

работа направлена на ознакомление студентов с оптическими свойствами биологических тканей, на ознакомление с физическими принципами спектрофотометрии биотканей in vivo в красной и ближней инфракрасной областях спектра, ознакомление с принципами работы современного тканевого оксиметра.

Задачи работы: 1) ознакомиться с оптическими свойствами биологических тканей по литературным данным; 2) изучить теоретические основы спектрофотометрии биотканей: режим с постоянной интенсивностью зондирующего излучения и многодистантный фазово- модуляционным подход; 3) ознакомиться с алгоритмами расчета оптических параметров биотканей по измеряемым параметрам интенсивности; 4) ознакомиться с функциональными возможностями спектрофотометрического прибора “OxiplexTS” и программного обеспечения “OxiTS”; 5) выполнить калибровку прибора и провести измерения на предложенном образце биоткани или фантоме; 6) провести исследование ослабления излучения различных длин волн на разных расстояниях между источником и приёмником; определить оптические параметры образцов/фантомов биологических тканей: коэффициента поглощения и транспортного коэффициента рассеяния спектрофотометрическим методом; 7) проанализировать полученные результаты, сделать выводы и оформить отчёт.

Теоретическая часть

Современные медицинские технологии базируются на фундаментальных результатах, полученных в физике. Примером является компьютерная медицинская томография. Такие виды томографии, как рентгеновская, магнитно-резонансная и позитронно-эмиссионная обеспечивают получение анатомической информации с большим пространственным разрешением и позволяют регистрировать локальные метаболические процессы. Значительные перспективы с точки зрения портативности, безопасности, простоты и надежности устройств в настоящее время имеет оптическая диффузионная томография [1]. Отличительной чертой современной медицинской диагностики является также продвижение в сторону неинвазивных, портативных, относительно недорогих методов и аппаратов.

Спектрофотометрические методы на протяжении нескольких десятилетий занимают прочное положение в медицинской диагностике, в том числе функциональной. Широко представлены спектрофотометрические методы в лабораторной диагностике. Спектрофотометрия (СФМ) биологических тканей в красном и ближнем инфракрасном (К-БИК) диапазонах длин волн – активно развивающееся направление исследований.

Спектрофотометрия представляет совокупность методов фотометрирования потоков оптического излучения от источников излучения или после его взаимодействия с образцами в зависимости от длины волны. В узком смысле под спектрофотометрией понимают теорию и методологию измерений фотометрических характеристик образца, безразмерных коэффициентов, определяемых отношением потоков: Х= Ф/Ф0 (где Ф0 – поток, падающий на образец, Ф – поток, наблюдаемый после взаимодействия с образцом). В зависимости от направлений освещения и наблюдения, величина Х является коэффициентом пропускания, отражения или рассеяния. Значения коэффициента Х зависят не только от свойств измеряемого образца: оптических постоянных, однородности, формы и состояния поверхности, - но и от длины волны и условий измерения: направлений освещения и наблюдения, положения освещаемого участка на образце, поляризации, температуры.

Среди наиболее широко использующихся в клинической практике спектрофотометрических методов особое место занимает пульсоксиметрия. Другое важное направление – спектрофотометрия с глубинным зондирование биоткани и регистрацией рассеянного в обратном направлении излучения; примером является оптическая тканевая оксиметрия, служащая для определения степени оксигенации гемоглобина крови в работающей мышечной ткани, в головном мозге новорожденных с патологией или взрослых в процессе активной деятельности мозга [1,2,3]. В данном методе регистрируются рассеянное в обратном направлении излучение. СФМ биотканей широко востребована в таких областях современной медицинской практики, как хирургия, анестезиология и реанимация, неонатолоия, неврология, ангиология, функциональная диагностика, реабилитация, спортивная медицина.

Физической основой методов СФМ является взаимодействие фотонов света с биологической тканью.

1. Оптические свойства биотканей

Ткани - необычайно сложные комплексы, включающие огромное разнообразие молекул, структур и функциональных единиц. Несмотря на такую сложность, возможно рассмотрение усредненных оптических свойств с учетом определенных ограничений и допущений.

С оптической точки зрения биоткани, включая биологические жидкости: кровь, лимфу и пр., - можно разделить на два больших класса:

1) сильно рассеивающие (оптически мутные), такие как кожа, мозг, стенка сосуда, кровь, склера, оптические свойства которых описываются моделью многократного рассеяния;

2) слабо рассеивающие (прозрачные), такие, как роговица и хрусталик глаза, оптические свойства которых описываются в модели однократного (или малократного) рассеяния [1].

Биологические ткани являются оптически неоднородными сильно рассеивающими и поглощающими средами со средним показателем преломления, большим, чем у воздуха. На границе раздела биообъект - воздух часть излучения отражается, так называемое френелевское отражение, а остальная часть проникает в биоткань. За счет многократного рассеяния и поглощения излучение экспоненциально затухает при распространении в биоткани. Объёмное рассеяние является причиной распространения значительной доли излучения в обратном направлении, обратное рассеяние.

Поглощенный свет преобразуется в тепло, переизлучается в виде флуоресценции, а также тратится на фотобиохимические реакции. Спектр поглощения определяется типом доминирующих поглощающих центров, а также содержанием воды в биоткани. В ультрафиолетовой (УФ, λ<390 нм) и инфракрасной (ИК) (λ>1 мкм) областях спектра велико поглощение белками и водой, соответственно, поэтому вклад рассеяния сравнительно мал, и свет неглубоко проникает в биоткань – всего на несколько клеточных слоев [4]. Для коротких волн видимой области глубина проникновения типичной биоткани составляет 0,5  2,5 мм; имеет место как поглощение, так и рассеяние; около 15  40% падающего излучения отражается. В области длин волн 0,60,9 мкм рассеяние превалирует над поглощением, следовательно, глубина проникновения света увеличивается до 820 мм. Также существенно увеличивается интенсивность отраженного и рассеянного в обратном направлении биотканью излучения, до 35-70% от падающего [1,4]. В зеленой области спектра 500-570 нм доминирует поглощение гемоглобном крови.

Из-за многослойной и многокомпонентной структуры кожи взаимодействие света с ней оказывается весьма сложным. Роговой слой отражает около 5  7% падающего излучения. Коллимированный пучок света преобразуется в диффузный за счет микроскопических неоднородностей на границе воздух – роговой слой. Большая часть отраженного кожей света образуется за счет обратного рассеяния различными слоями ткани (роговой слой, эпидермис, дерма и микрососудистая система). Поглощение рассеянного света пигментами кожи дает количественную информацию о концентрации билирубина, меланина, воды, о насыщении гемоглобина кислородом, о содержании лекарственных препаратов и других поглотителей в ткани и крови, что является основой ряда диагностических методов. Значительное проникновение видимого и ближнего ИК света через кожу внутрь организма человека, в области длин волн так называемого “терапевтического окна” (650  900 нм), является основой ряда методов фототерапии и оптической диагностики (спектрофотометрии). Твердые ткани, такие, как ребра и черепная коробка, а также цельная кровь демонстрируют сравнительно хорошее пропускание в видимой и ближней ИК области спектра [1,4].

Основные биологические хромофоры

Хромофоры биологических тканей, вещества, ответственные за поглощение излучения, могут быть разделены на те, которые проявляют кислородозависимое поглощение (окси- и дезоксигемоглобин, миоглобин и цитохромоксидаза), и те, чьё поглощение существенно не меняется в процессе клинических измерений in vivo (вода, меланин, билирубин, жировая ткань) [5,6].

Анализ литературных данных [5,6] и расчеты по соответствующим концентрациям и молярным коэффициентам экстинкции позволяют установить, что основной вклад в общий коэффициент поглощения в красной и ближней ИК областях спектра вносят фракции гемоглобина и вода. Вклад остальных хромофоров колеблется от долей процента для билирубина и до 10% для цитохромоксидазы и меланина [6]. Корректность учета вклада этих хромофоров в общий коэффициент поглощения определяет составляющую методической погрешности спектрофотометерических методов, что по-разному учитывается в различных методах спектрофотометрии и их приборных реализациях.

Физическая модель биоткани

Четыре независимых макроскопических параметра характеризуют распространение излучения в ткани: параметр анизотропии рассеяния (g), коэффициент поглощения (a), коэффициент рассеяния (s), показатель преломления (n) (см. табл. 1). Перечисленные оптические параметры содержат информацию как о биохимических свойствах, так и морфологических, структурных и функциональных особенностях ткани [1,3,4].

Таблица 1

Макроскопические оптические параметры, характеризующие распространение излучения в биоткани

Параметр

Обозначение

Характеристика

Показатель преломления

n

Отношение скорости излучения в вакууме к скорости в среде

Коэффициент поглощения

(см-1)

а

Величина, обратная средней длине свободного пробега поглощенного фотона в биоткани

Коэффициент рассеяния

(см-1)

s

Величина, обратная средней длине свободного пробега однократно рассеянного фотона в биоткани

Фактор анизотропии

g

Средний косинус угла рассеяния

Транспортный коэффициент рассеяния (см-1)

s

s=s (1-g)

Величина, обратная средней длине изотропного рассеяния

Математически параметр анизотропии рассеяния определяется как средний косинус угла рассеяния 

, (1)

где p() = p(s,s') - фазовая функция; p(s,s') описывает рассеивающие свойства среды и представляет собой функцию плотности вероятности для рассеяния в направлении s' фотона, движущегося в направлении s, т.е. характеризует элементарный акт рассеяния. Если рассеяние симметрично относительно направления падающей волны, тогда фазовая функция зависит только от угла  между направлениями s и s'.

Предположение о случайном распределении рассеивателей в среде, что означает отсутствие в структуре биоткани пространственной корреляции, ведет к следующей нормировке

. (2)

Во многих практических случаях фазовая функция хорошо аппроксимируется с помощью функции Хеньи-Гринштейна:

, (3)

Значение g изменяется в пределах от 0 до 1: g = 0 соответствует случаю изотропного (рэлеевского) рассеяния, g = 1 – полному рассеянию вперед (рассеяние Ми на крупных частицах). Для биологических тканей g = 0,7-0,99.

Величина, обратная средней длине свободного пробега (СДСП) является удобным способом описания коэффициентов рассеяния и поглощения. СДСП однократно рассеянного фотона в биоткани определяется как lph = t-1 = (a + s)-1; t - коэффициент экстинкции (коэффициент ослабленияизлучения).

Транспортный (редуцированный) коэффициент рассеяния (s') не является независимым от других параметров в табл. 1 и определяется как

s' = s  (1- g). (4)

Транспортный коэффициент рассеяния определяет характерную длину, на которой фотоны теряют память о своем первоначальном направлении, т.е. s' дает информацию об изотропно-рассеянных событиях.

Средняя транспортная длина пробега фотона . Отметим, что средняя транспортная длина пробега фотона в среде с анизотропным однократным рассеянием существенно выше длины свободного пробега в среде с изотропным однократным рассеянием . Транспортная длина означает такую длину, на которой фотон теряет свое первоначальное направление.

При решении задач спектрофотометрии и тканевой оксиметрии, в частности, допускается, что все оптические параметры, указанные в табл. 1, являются макроскопически гомогенными по всему объему ткани, хотя это и не является строгим описанием биоткани. Несмотря на такое упрощенное представление биологической ткани, для многих практических применений этого достаточно. В экспериментальных и теоретических исследованиях используют двух- и трехслойные модели исследуемых биологических объектов. Каждый слой имеет свои оптические характеристики, близкие по значениям к характеристикам реальных биологических тканей.

Доминирующими факторами, влияющими на рассеивающие свойства биотканей, являются размер, форма и плотность центров рассеяния, а также различия в показателях преломления. Рассеяние в биотканях, в основном, происходит на клетках, клеточных органеллах и макромолекулах, таких как белки [1]. Размеры клеток млекопитающих находятся в диапазоне 2-30 мкм, а клеточные органеллы существенно различаются по форме и размерам (от 5 нм до 7 мкм). Белки чаще рассматриваются как «сферы» диаметром менее 7 нм.

Велика вариабельность значений показателя преломления в биотканях. Липиды (n1,46) и белки (n1,51) имеют относительно высокие показатели преломления, в то время как межклеточная жидкость имеет более низкий показатель преломления (n1,35).

Оптические свойства биотканей в К-БИК области

Фотоны К-БИК диапазона обладают наибольшей глубиной проникновения в ткани, и величина 1/(s' + а) определяет глубину проникновения [1]. В ИК диапазоне выше 930 нм излучение сильно поглощается водой. В видимой и ультрафиолетовой области преобладает поглощение белками и водой.

Гемоглобин является наиболее сильным поглотителем фотонов вне диапазона 700 – 900 нм, в зелёной области спектра (490-570 нм). Как окси-, так и дезокси-гемоглобин ответственны за 90% поглощения К-БИК излучения в мышцах. Различия в поглощении двумя указанными фракциями гемоглобина обеспечивают раздельное определение их концентраций по спектрам поглощения [1,6].

Обширные данные по оптическим свойствам тканей содержатся в различных литературных источниках. Однако приведенные в них значения оптических коэффициентов существенно разняться. Одними из причин таких отличий являются разные методики приготовления препаратов и измерения, различные инструментальные методы. Измеренные in vitro и in vivo параметры различны для одних и тех же тканей. Измерение оптических параметров биологических тканей in vivo с заданной точностью и воспроизводимостью результатов является актуальной на сегодняшний день задачей. Приведенные в литературе диапазоны значений оптических параметров биотканей соответствуют интервалам: а - от 0,05 до 1 см-1 и s - от 0,1 до 1000 см-1 [1]. Рассеяние в биоткани имеет четкую прямую направленность; в основном заявленные значения соответствуют g=0,9 и выше, и, как минимум, для ткани печени g не зависит от длины волны излучения [1]. Типичные значения для s' сильно рассеивающих тканей (мышечной, головного мозга и др.) находятся в диапазоне от 3 до 20 см-1, для а - от 0,1 до 0,3 см-1.

Излучение К-БИК диапазона характеризуется значительной глубиной проникновения в ткани, но имеет низкий оптический контраст для тканевых хромофоров, отличных от гемоглобина, т.к. максимумы их поглощения находятся вне К-БИК диапазона. Это ограничивает возможности применения К-БИК СФМ для исследования различных физиологических, метаболических процессов в тканях. В медицинских приложениях, где достижение высокого контраста крайне необходимо, перспективна флуоресцентная спектроскопия. Экзогенные флуорофоры призваны повысить чувствительность и специфичность и решить проблему недостаточного контраста К-БИК СФМ. Количественными регистрируемыми параметрами ткани являются а и s'. Многократное рассеяние излучения в биоткани влияет на восстановление оптических параметров. Определение этих параметров с высокой точностью является значительным шагом для реализации количественной спектрофотометрии тканей и актуальной задачей.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]