
- •1. Понятие хроматографии. Основные цели и задачи.
- •2. Классификация хроматографических методов.
- •3. Элюентная хроматография.
- •4. Вытеснительная хроматография.
- •5. Фронтальная хроматография.
- •6. Хроматограмма. Основные характеристики хроматографического пика.
- •7. Основные характеристики удерживания и разделения компонентов на хроматограмме.
- •8. Основные закономерности сорбционных процессов. Фактор емкости и коэффициент извлечения.
- •9. Основные факторы размывания хроматографического пика.
- •10. Теория теоретических тарелок. Расчет вэтт и количества теоретических тарелок по хроматограмме.
- •11. Оценка эффективности и селективности хроматографической колонки.
- •12. Степень разделения компонентов и ее связь с параметрами хроматографической колонки.
- •13. Уравнение Ван-Деемтера для насадочной колонки.
- •14. Уравнение Голея для капиллярной колонки.
- •15. Определение оптимального значения скорости подвижной фазы.
- •16. Влияние температуры на размывание хроматографического пика.
- •17.Разделение компонентов в изотермическом режиме и режиме программирования температуры
- •18. Газовая хроматография. Общие понятия.
- •19. Общая схема газо-жидкостного хроматографа.
- •20.Хроматографические колонки применяемые в гжх.
- •21. Методика заполнения насадочной колонки для гжх.
- •22. Основные характеристики подвижной фазы.
- •23. Общие требования к устройствам ввода пробы в гжх
- •24 Ввод газообразных и твердых проб в гжх.
- •Ввод пробы
- •25. Ввод жидких проб в гжх
- •26. Детекторы в гжх, основные требования.
- •27. Интегральные и дифференциальные детекторы.
- •28. Потоковые и концентрационные детекторы
- •29.Характеристики детекторов (чувствительность, порог чувствительности)
- •30. Линейность, селективность детекторов
- •31.Общее устройство и принципиальная электрическая схема катарометра
- •32.Типы термочувствительных ячеек и элементов детектора по теплопроводности
- •33. Детектор по плотности.
- •34. Пламенно-фотометрический детектор
- •35. Вольтамперная характеристика ионизационных детекторов
- •36. Пламенно-ионизационный детектор
- •37. Детектор электронного захвата
- •38.Термоионный детектор. Гелиевый детектор
- •39. Фотоионизационный детектор
- •40. Газоадсорбционная хроматография. Силы взаимодействия сорбата и сорбента.
- •41.Класификация разделяемых веществ и сорбентов в газоадсорбционной хроматографии.
- •42. Газожидкостная храмотография. Требования к неподвижной фазе.
- •43.Классификация жидких фаз. Основные представления.
- •44. Классификация жидких фаз по величине относительно полярности.
- •45. Влияние количества жидкой фазы и толщины пленки на эффективность колонки.
- •46. Жидкостная хроматография. Общие положения.
- •47. Адсорбционная жидкостная хроматография.
- •48. Распределительная жидкостная хроматография.
- •49. Ионообменная, ионная, ион-парная хроматография.
- •50. Эксклюзионная хроматография.
- •51. Классифицируйте методы тонкослойной и бумажной хроматографии. Основные достоинства и недостатки.
- •53. Сверхкритическая флюидная хроматография.
- •54. Схема и принцип действия жидкостного хроматографа. Хроматографические колонки
- •55.Рефрактометрические детекторы
- •56.Фотометрические детекторы
- •57.Флуоресцентные детекторы
- •58.Электрохим., кондуктометр. И вольтамперометр. Детекторы
- •59. Качественный анализ в хроматографии. Основные цели и задачи,методы
- •60. Идентификация компонентов с использованием индексов удерживания Ковача.
- •61.Количественный анализ в хроматографии. Параметры пика используемые для количественного анализа.
- •62.Методы триангуляции. Измерение количественных параметров пиков различного разрешения.
- •63. Метод абсолютной калибровки и внутреннего стандарта
- •64. Методы нормирования площадей
- •65. Какие электрокинетические явления лежат в основе метода капиллярного электрофореза?
- •66.Общее устройство систем капиллярного электрофореза. Основные ограничения метода.
- •67.Какова эффективность разделения методом капиллярного электрофореза (число теоретических тарелок) и за счет какого фактора она в основном достигается?
- •68.В чем заключается явление стекинга и какова его физическая природа?
- •69.Каков физический смысл критической концентрации мицеллообразования (ккм)?
- •70.Каково строение мицеллы и ее собственного двойного электрического слоя (дэс)?
13. Уравнение Ван-Деемтера для насадочной колонки.
Эффективность
насадочной хроматографической колонки
и скорость потока газа-носителя (
)
связаны между собой уравнением
Ван-Деемтера:
,
(40)
где h высота, эквивалентная теоретической тарелке; dp диаметр частиц носителя; коэффициент заполнения колонки, характеризующий степень плотности упаковки насадки в колонке; Dg коэффициент диффузии хроматографируемого вещества в газовой фазе; коэффициент извилистости пути потока газа-носителя; Dl коэффициент диффузии хроматографируемого вещества в неподвижной жидкой фазе; df эффективная толщина слоя неподвижной жидкой фазы на поверхности твердого носителя; k коэффициент емкости колонки.
В общем виде уравнение Ван-Деемтера можно представить в следующей форме:
.
(41)
Каждое из слагаемых уравнения (41) количественно представляет вклад различных параметров процесса разделения, приводящих к изменению профиля зоны исследуемого соединения в хроматографической колонке.
Первый член уравнения А отражает вклад вихревой диффузии и не зависит от скорости потока газа-носителя. Поэтому с уменьшением размера частиц твердого носителя dp , при одной и той же величине степени упаковки насадки в колонке, высота, эквивалентная теоретической тарелке, уменьшается, эффективность колонки возрастает.
Графически вклад этого слагаемого изображается прямой, параллельной оси абсцисс, а величина отсекаемого на оси ординат отрезка определяется величиной диаметра частиц носителя неподвижной жидкой фазы.
Второй
член уравнения
отражает влияние процесса диффузии
исследуемого
соединения в
газовой фазе
на эффективность колонки. Коэффициент
извилистости показывает влияние
геометрического фактора насадки колонки.
Чем меньше различаются между собой
частицы сорбента по размеру и форме
гранул, тем менее извилисты траектории,
по которым должны двигаться молекулы
разделяемых веществ в потоке газа-носителя.
Далее, высота, эквивалентная теоретической тарелке, возрастает пропорционально увеличению коэффициента диффузии вещества в газовой фазе Dg. Возможные пути управления величиной коэффициента диффузии – использование влияния температуры процесса разделения и природы газа-носителя. График вклада этого слагаемого изображается гиперболой.
Из
третьего члена,
,
характеризующего влияние процессов
диффузии
в неподвижной жидкой фазе,
следует, что высота, эквивалентная
теоретической тарелке, пропорциональна
квадрату толщины жидкой пленки df.
Эффективность колонки повышается, если
содержание неподвижной жидкой фазы на
носителе снижается.
Для более толстого слоя неподвижной жидкой фазы время, необходимое для диффузии хроматографируемого вещества через пленку неподвижной жидкой фазы и обратно, возрастает и приводит к расширению зоны и снижению эффективности колонки.
Коэффициент
емкости колонки k
обычно превышает единицу для большинства
летучих соединений. Следовательно,
значение
уменьшается с увеличением k.
График вклада этого, третьего, слагаемого представляет собой прямую, выходящую из начала координат.
Результирующая, с учётом вклада всех трёх слагаемых, изображается кривой (рис. 17).
Р
ис.
17.
Зависимость высоты, эквивалентной
теоретической тарелке, от скорости
потока газа-носителя
Приведенная графическая зависимость позволяет, с одной стороны, установить численное значение оптимальной скорости газа-носителя и, с другой стороны, оценить величины вкладов каждого из процессов, описываемых слагаемыми уравнения Ван-Деемтера в величину высоты, эквивалентной теоретической тарелке, и, изменяя значение скорости потока газа-носителя, изменять величины этих вкладов.