
- •1. Понятие хроматографии. Основные цели и задачи.
- •2. Классификация хроматографических методов.
- •3. Элюентная хроматография.
- •4. Вытеснительная хроматография.
- •5. Фронтальная хроматография.
- •6. Хроматограмма. Основные характеристики хроматографического пика.
- •7. Основные характеристики удерживания и разделения компонентов на хроматограмме.
- •8. Основные закономерности сорбционных процессов. Фактор емкости и коэффициент извлечения.
- •9. Основные факторы размывания хроматографического пика.
- •10. Теория теоретических тарелок. Расчет вэтт и количества теоретических тарелок по хроматограмме.
- •11. Оценка эффективности и селективности хроматографической колонки.
- •12. Степень разделения компонентов и ее связь с параметрами хроматографической колонки.
- •13. Уравнение Ван-Деемтера для насадочной колонки.
- •14. Уравнение Голея для капиллярной колонки.
- •15. Определение оптимального значения скорости подвижной фазы.
- •16. Влияние температуры на размывание хроматографического пика.
- •17.Разделение компонентов в изотермическом режиме и режиме программирования температуры
- •18. Газовая хроматография. Общие понятия.
- •19. Общая схема газо-жидкостного хроматографа.
- •20.Хроматографические колонки применяемые в гжх.
- •21. Методика заполнения насадочной колонки для гжх.
- •22. Основные характеристики подвижной фазы.
- •23. Общие требования к устройствам ввода пробы в гжх
- •24 Ввод газообразных и твердых проб в гжх.
- •Ввод пробы
- •25. Ввод жидких проб в гжх
- •26. Детекторы в гжх, основные требования.
- •27. Интегральные и дифференциальные детекторы.
- •28. Потоковые и концентрационные детекторы
- •29.Характеристики детекторов (чувствительность, порог чувствительности)
- •30. Линейность, селективность детекторов
- •31.Общее устройство и принципиальная электрическая схема катарометра
- •32.Типы термочувствительных ячеек и элементов детектора по теплопроводности
- •33. Детектор по плотности.
- •34. Пламенно-фотометрический детектор
- •35. Вольтамперная характеристика ионизационных детекторов
- •36. Пламенно-ионизационный детектор
- •37. Детектор электронного захвата
- •38.Термоионный детектор. Гелиевый детектор
- •39. Фотоионизационный детектор
- •40. Газоадсорбционная хроматография. Силы взаимодействия сорбата и сорбента.
- •41.Класификация разделяемых веществ и сорбентов в газоадсорбционной хроматографии.
- •42. Газожидкостная храмотография. Требования к неподвижной фазе.
- •43.Классификация жидких фаз. Основные представления.
- •44. Классификация жидких фаз по величине относительно полярности.
- •45. Влияние количества жидкой фазы и толщины пленки на эффективность колонки.
- •46. Жидкостная хроматография. Общие положения.
- •47. Адсорбционная жидкостная хроматография.
- •48. Распределительная жидкостная хроматография.
- •49. Ионообменная, ионная, ион-парная хроматография.
- •50. Эксклюзионная хроматография.
- •51. Классифицируйте методы тонкослойной и бумажной хроматографии. Основные достоинства и недостатки.
- •53. Сверхкритическая флюидная хроматография.
- •54. Схема и принцип действия жидкостного хроматографа. Хроматографические колонки
- •55.Рефрактометрические детекторы
- •56.Фотометрические детекторы
- •57.Флуоресцентные детекторы
- •58.Электрохим., кондуктометр. И вольтамперометр. Детекторы
- •59. Качественный анализ в хроматографии. Основные цели и задачи,методы
- •60. Идентификация компонентов с использованием индексов удерживания Ковача.
- •61.Количественный анализ в хроматографии. Параметры пика используемые для количественного анализа.
- •62.Методы триангуляции. Измерение количественных параметров пиков различного разрешения.
- •63. Метод абсолютной калибровки и внутреннего стандарта
- •64. Методы нормирования площадей
- •65. Какие электрокинетические явления лежат в основе метода капиллярного электрофореза?
- •66.Общее устройство систем капиллярного электрофореза. Основные ограничения метода.
- •67.Какова эффективность разделения методом капиллярного электрофореза (число теоретических тарелок) и за счет какого фактора она в основном достигается?
- •68.В чем заключается явление стекинга и какова его физическая природа?
- •69.Каков физический смысл критической концентрации мицеллообразования (ккм)?
- •70.Каково строение мицеллы и ее собственного двойного электрического слоя (дэс)?
11. Оценка эффективности и селективности хроматографической колонки.
Для того, чтобы разделение двух последовательных пиков стало заметным, необходимо, чтобы расстояние между максимумами пиков на оси времени (t) было больше, чем ширина пиков у основания, выраженная через их стандартные квадратичные отклонения.
Установлено, что достаточное разделение происходит лишь в том случае, если:t = 2(1+ 2).
При существовании соотношенияt (1 + 2),перекрытие (наложение) пиков настолько велико, что оба компонента воспринимаются детектором как одно вещество.
Практически полное разделение происходит при условии:
|
t 3 (1+ 2) |
(26) |
С помощью соотношений (24), (25) и (26) можно непосредственно установить, произошло разделение компонентов или нет. Однако величины t и настолько сильно зависят от внешних условий, что становится невозможным на их основе сделать какие-либо выводы о параметрах разделительной колонки.
Подставив в уравнение (24) вместо t разность (t2 - t1) и разделив обе части уравнения на время удерживания первого компонента t1, получим
.
(27)
Относительные
величины
и
в
уравнении (27) уже в значительно меньшей
мере зависят от внешних условий и
определяются главным образом параметрами
колонки.
Из уравнения (27) следует, что главную роль в процессе разделения веществ в колонке играют:
отношение значений абсолютных времен удерживания
;
относительные стандартные отклонения пиков и .
Таким образом, определяющими для процесса разделения веществ являются следующие два свойства хроматографической колонки:
первое характеризуется различием во времени, в течение которого колонка удерживает разделяемые компоненты, называется разделительным действием или селективностью и количественно оценивается величиной отношения для двух разделяемых соединений;
второе определяет меру размывания каждого пика относительно среднего значения времени, т.е. относительную ширину пика, называется эффективностью разделения и количественно оценивается величиной отношения
для каждого из разделяемых компонентов.
Под селективностью в самом общем смысле понимают способность хроматографической системы (сорбента и подвижной фазы) делить данную пару соединений. Как видно из изложенного в предыдущих разделах, роль хроматографической системы сводится, прежде всего к тому, чтобы обеспечить различие в скоростях перемещения компонентов. Чем больше это различие, тем сильнее раздвинуты максимумы пиков или пятна на пластине и тем лучше их разделение. Поэтому представляется логичным в качестве меры селективности использовать отношение скоростей перемещения компонентов.
Коэффициент селективности является мерой относительного удерживания или относительной подвижности разделяемых веществ:
(1.31)
где t'R1 и t'R2 исправленное время удерживания соответственно веществ 1 и 2,VR’1и VR’2 исправленный удерживаемый объем соответственно веществ 1 и 2, k'1 и k'2 коэффициенты емкости этих веществ.
Если = 1, разделение компонентов сложного вещества невозможно, так как их характеристики одинаковы и на хроматограмме образуется один пик.
Для разделения компонентов необходимо подобрать такие условия, чтобы разделяемые вещества перемещались по колонке с разными скоростями.
Это достигается главным образом подбором соответствующей подвижной и неподвижной фазы.
Так
как
зависит от коэффициентов емкости k'
разделяемых компонентов, то
повысив селективность разделения этих
компонентов можно, увеличить объем
неподвижной фазы, т. е. увеличив длину
колонки и объем содержащегося в ней
сорбента или неподвижной жидкой ф
азы.
На хроматограмме пики компонентов анализируемой смеси могут иметь различный вид. Они могут быть расположены совершенно отдельно друг от друга или в большей или меньшей степени накладываться друг на друга (рис.1.8).
Разделение двух соседних хроматографических пиков характеризуется разрешением Rs, (критерием разделения) которое описывается уравнением
,
(1.32)
где 1, 2 ширина пиков у их основания.
Для плохо разделяющихся пиков предложено несколько критериев:
Критерий разделения меняется от 0 до бесконечности. Полное разделение пиков достигается при Rs=1.
Кроме того критерий разделения можно представить в виде произведения:
Где Kc критерий селективности, который показывает избирательность хроматографической колонки по отношению к данной паре разделяемых веществ. Он показывает увеличение расстояния между максимумами в ходе хроматографического разделения:
Данная формула удовлетворительно описывает избирательность колонки с большими значениями времен удерживания. Если хотят охарактеризовать избирательность колонки для слабосорбирующихся веществ, в данную формулу подставляют исправленные времена удерживания.
Для количественного разделения компонентов вполне достаточно, чтобы Rs имело значение от 1 до 1,5. При Rs = 1 перекрывается только 2% площади пиков, при Rs = 1,5 два соседних пика разделены практически до нулевой (базовой) линии.