
- •1. Понятие хроматографии. Основные цели и задачи.
- •2. Классификация хроматографических методов.
- •3. Элюентная хроматография.
- •4. Вытеснительная хроматография.
- •5. Фронтальная хроматография.
- •6. Хроматограмма. Основные характеристики хроматографического пика.
- •7. Основные характеристики удерживания и разделения компонентов на хроматограмме.
- •8. Основные закономерности сорбционных процессов. Фактор емкости и коэффициент извлечения.
- •9. Основные факторы размывания хроматографического пика.
- •10. Теория теоретических тарелок. Расчет вэтт и количества теоретических тарелок по хроматограмме.
- •11. Оценка эффективности и селективности хроматографической колонки.
- •12. Степень разделения компонентов и ее связь с параметрами хроматографической колонки.
- •13. Уравнение Ван-Деемтера для насадочной колонки.
- •14. Уравнение Голея для капиллярной колонки.
- •15. Определение оптимального значения скорости подвижной фазы.
- •16. Влияние температуры на размывание хроматографического пика.
- •17.Разделение компонентов в изотермическом режиме и режиме программирования температуры
- •18. Газовая хроматография. Общие понятия.
- •19. Общая схема газо-жидкостного хроматографа.
- •20.Хроматографические колонки применяемые в гжх.
- •21. Методика заполнения насадочной колонки для гжх.
- •22. Основные характеристики подвижной фазы.
- •23. Общие требования к устройствам ввода пробы в гжх
- •24 Ввод газообразных и твердых проб в гжх.
- •Ввод пробы
- •25. Ввод жидких проб в гжх
- •26. Детекторы в гжх, основные требования.
- •27. Интегральные и дифференциальные детекторы.
- •28. Потоковые и концентрационные детекторы
- •29.Характеристики детекторов (чувствительность, порог чувствительности)
- •30. Линейность, селективность детекторов
- •31.Общее устройство и принципиальная электрическая схема катарометра
- •32.Типы термочувствительных ячеек и элементов детектора по теплопроводности
- •33. Детектор по плотности.
- •34. Пламенно-фотометрический детектор
- •35. Вольтамперная характеристика ионизационных детекторов
- •36. Пламенно-ионизационный детектор
- •37. Детектор электронного захвата
- •38.Термоионный детектор. Гелиевый детектор
- •39. Фотоионизационный детектор
- •40. Газоадсорбционная хроматография. Силы взаимодействия сорбата и сорбента.
- •41.Класификация разделяемых веществ и сорбентов в газоадсорбционной хроматографии.
- •42. Газожидкостная храмотография. Требования к неподвижной фазе.
- •43.Классификация жидких фаз. Основные представления.
- •44. Классификация жидких фаз по величине относительно полярности.
- •45. Влияние количества жидкой фазы и толщины пленки на эффективность колонки.
- •46. Жидкостная хроматография. Общие положения.
- •47. Адсорбционная жидкостная хроматография.
- •48. Распределительная жидкостная хроматография.
- •49. Ионообменная, ионная, ион-парная хроматография.
- •50. Эксклюзионная хроматография.
- •51. Классифицируйте методы тонкослойной и бумажной хроматографии. Основные достоинства и недостатки.
- •53. Сверхкритическая флюидная хроматография.
- •54. Схема и принцип действия жидкостного хроматографа. Хроматографические колонки
- •55.Рефрактометрические детекторы
- •56.Фотометрические детекторы
- •57.Флуоресцентные детекторы
- •58.Электрохим., кондуктометр. И вольтамперометр. Детекторы
- •59. Качественный анализ в хроматографии. Основные цели и задачи,методы
- •60. Идентификация компонентов с использованием индексов удерживания Ковача.
- •61.Количественный анализ в хроматографии. Параметры пика используемые для количественного анализа.
- •62.Методы триангуляции. Измерение количественных параметров пиков различного разрешения.
- •63. Метод абсолютной калибровки и внутреннего стандарта
- •64. Методы нормирования площадей
- •65. Какие электрокинетические явления лежат в основе метода капиллярного электрофореза?
- •66.Общее устройство систем капиллярного электрофореза. Основные ограничения метода.
- •67.Какова эффективность разделения методом капиллярного электрофореза (число теоретических тарелок) и за счет какого фактора она в основном достигается?
- •68.В чем заключается явление стекинга и какова его физическая природа?
- •69.Каков физический смысл критической концентрации мицеллообразования (ккм)?
- •70.Каково строение мицеллы и ее собственного двойного электрического слоя (дэс)?
10. Теория теоретических тарелок. Расчет вэтт и количества теоретических тарелок по хроматограмме.
Теория теоретических тарелок разработана для описания процесса дистилляции, однако она является общей для всех многостадийных процессов и позволяет оценить эффективность колонки.
Теория теоретических тарелок является формальной и основана на представлении, что хроматографируемое вещество проходит через слой сорбента не непрерывным потоком, а порциями, распределяясь между подвижной и неподвижной фазами на отдельных элементарных участках слоя так называемых «тарелках». Через каждую такую тарелку вещество проходит периодическими толчками. При этом предполагается, что за время каждого толчка, т. е. практически мгновенно, на тарелках успевает установиться равновесие распределения всех компонентов между подвижной и неподвижной фазами.
Таким образом, согласно этой теории, хроматографический процесс является многоступенчатым и состоит из большого числа актов сорбции=десорбции или растворения=испарения компонентов анализируемого вещества в хроматографической колонке, а сама колонка рассматривается как совокупность многих дискретных ступеней тарелок, хотя в действительности слой адсорбента или пленка неподвижной жидкой фазы в колонке является непрерывным. Анализируемое вещество вместе с элюентом попадает на первую тарелку. Новая порция элюента, подаваемая на первую тарелку, приводит к новому распределению вещества между подвижной и неподвижной фазами, причем часть вещества с данной тарелки переносится на следующую. На этой тарелке также мгновенно устанавливается равновесие, а часть вещества уносится на следующие тарелки. Вследствие этого с каждой новой порцией элюента концентрация вещества на первой тарелке падает, а на последующих возрастает.
В результате такого перемещения и перераспределения хроматографируемое вещество оказывается не на одной, а на нескольких тарелках, причем на средних его концентрация достигает максимального значения по сравнению с соседними, так как свежие порции элюента, поступающие в колонку, встречают на первых тарелках все меньшие количества данного компонента в неподвижной фазе. Таким образом, вещество размывается по некоторой толщине слоя неподвижной фазы в колонке, по нескольким тарелкам, причем, чем сильнее размывание, тем большее число тарелок занимает вещество. Следовательно, число тарелок, занимаемых данным компонентом анализируемого вещества, может служить мерой степени размывания вещества по слою адсорбента, мерой эффективности колонки.
Такой прием замены реального процесса, протекающего в реальной хроматографической колонке непрерывно и неравновесно, эквивалентным по результатам многоступенчатым дискретным процессом, также приводящим к размыванию полосы компонента, позволил на основании теории скоростей вывести уравнение хроматографической кривой, т.е. дал математическую модель продвижения полосы компонента через колонку.
Гауссов характер хроматографического пика обусловлен беспорядочным статистическим характером перемещения большого числа частиц вещества в хроматографической колонке. Одни частицы передвигаются в ней быстрее, другие медленнее, и значения скорости перемещения имеют симметричный разброс относительно среднего значения, характеризующего поведение в колонке некоторой усредненной молекулы.
Если длину слоя сорбента в колонке (длину колонки) L, на которой осуществляется разделение смеси веществ и расположено некоторое число n теоретических тарелок, необходимое для разделения анализируемой смеси веществ, разделить на это число n, то получается величина Н, называемая высотой, эквивалентной одной теоретической тарелке (ВЭТТ):
(1.21)
Высота эквивалентной теоретической тарелки представляет собой толщину слоя сорбента, необходимую для установления равновесного распределения вещества между подвижной и неподвижной фазами. Таким образом, число теоретических тарелок n и высота эквивалентной теоретической тарелки Н являются величинами, характеризующими эффективность хроматографической колонки. Высота эквивалентной теоретической тарелки выражают в единицах длины, как правило в миллиметрах.
Так как = 4 мм, экспериментально Н можно определить как дисперсию, приходящуюся на единицу длины колонки L,мм, непосредственно из хроматограммы, используя полученное на хроматограмме значение ширины пика у его основания для нахождения величины :
(1.22)
Так
как
,
то
.
Приняв время удерживания tR
эквивалентом длины колонки, можно
установить, что число теоретических
тарелок n
равно:
(1.23)
Если ширина пика измерена на середине его высоты, то 1/2 = 2,35 и
(1.24)
Под эффективностью в хроматографии понимают способность системы "предотвращать" (ограничивать) размывание зон разделяемых веществ. Эффективность колонки тем выше, чем уже пик получается при том же времени удерживания, и измеряется числом теоретических тарелок. Хроматографическая колонка считается высокоэффективной, когда размывание полос небольшое, пики узкие, высота Нсоставляет 0,31 мм. В идеальном случае величина Н приближается к диаметру dpзерна сорбента. При уменьшении значения Н максимумы на хроматограмме становятся более острыми.
Для сравнения эффективности двух хроматографических колонок следует использовать приведенную высоту h тарелки:
(1.25)
Теория теоретических тарелок позволяет сравнить эффективность различных колонок, оценить качество сорбента и заполнения колонки. Но эта теория не позволяет выявить зависимость эффективности работы хроматографической колонки от скорости подачи подвижной фазы, природы и дисперсности сорбента, не может дать практических рекомендаций, позволяющих минимизировать размывание хроматографических пиков.
Высота эквивалентной теоретической тарелки представляет собой толщину слоя сорбента, необходимую для установления равновесного распределения вещества между подвижной и неподвижной фазами. Таким образом, число теоретических тарелок N и высота эквивалентной теоретической тарелки Н являются величинами, характеризующими эффективность хроматографической колонки. Высоту эквивалентной теоретической тарелки выражают в единицах длины, как правило в миллиметрах.
Так
как ω= 4δ, экспериментально Н можно
определить как дисперсию, приходящуюся
на единицу длины колонки L,
мм, непосредственно из хроматограммы,
используя полученное на хроматограмме
значение ширины пика ω у его основания
для нахождения величины δ: H=
Для сравнения эффективности двух хроматографических колонок следует использовать приведенную высоту h тарелки:
h=
(1.25)
Теория теоретических тарелок предоставляет возможность сравнить эффективность различных колонок, оценить качество сорбента и заполнения колонки. Но эта теория не позволяет выявить зависимость эффективности работы хроматографической колонки от скорости подачи подвижной фазы, природы и дисперсиости сорбента, не может дать практических рекомендаций, позволяющих минимизировать размывание хроматографических пиков.