Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ГОТОВЫЕ ШПОРЫ ПО ХРОМАТОГРАФИИ.docx
Скачиваний:
4
Добавлен:
01.05.2025
Размер:
1.89 Mб
Скачать

8. Основные закономерности сорбционных процессов. Фактор емкости и коэффициент извлечения.

В основе хроматографического разделения лежат, прежде всего, сорбционные процессы. Как большинство физико-химических процессов они проходят две стадии: стадию приближения к равновесию, которая развертывается во времени, характеризуется определенной скоростью и изучается в разделе кинетики сорбции, и стадию собственно равновесную, закономерности которой описываются статикой сорбции. Последняя стадия играет решающую роль в достижении хроматографического разделения.

Под сорбцией понимают поглощение газов, паров или растворенных веществ твердыми или жидкими поглотителями. При этом поглощаемые вещества называют сорбатами, а поглотители – сорбентами. Если при этом сорбат поглощается всем объемом сорбента, то процесс называют абсорбцией, а если он концентрируется на поверхности сорбента, то адсорбцией; соответственно и сорбенты делятся на абсорбенты и адсорбенты. Чаще всего адсорбентами являются твердые тела с развитой поверхностью, в хроматографии широко применяют для этой цели силикагели, алюмогели, активные угли, молекулярные сита, пористые полимерные сорбенты. Жидкие поглотители (абсорбенты) сами по себе в аналитической хроматографии не используют, их обычно наносят на поверхность твердых материалов с относительно небольшой поверхностью, которые называют твердыми носителями. В этом случае наряду с абсорбцией и адсорбцией на поверхности жидкого поглотителя, называемого в хроматографии неподвижной фазой, может происходить адсорбция и на поверхности твердого носителя. Таким образом, в хроматографии применяют два основных типа сорбентов: твердые адсорбенты и неподвижные фазы, нанесенные на твердый носитель.

Коэффициент емкости колонки (k) — это мера молярного распределения анализируемого вещества между НФ и газовой фазой. Эта величина определяется экспериментально как отношение времени нахождения компонента в НФ ко времени его нахождения в газовой фазе;

k = ni,s/ni,m = /tm,

где ni,s и ni,m - число молей компонента i в НФ и подвижной фазе соответственно. Коэффициент емкости связан с коэффициентом распределения следующим образом:

KВ=kb,

где b фазовое отношение. Фазовое отношение — это отношение объема колонки, занятого газовой (или подвижной) фазой (Vm) к объему колонки, занятому НФ (Vs):

b=Vm/ Vs

9. Основные факторы размывания хроматографического пика.

Основные факторы размывания хроматографических пиков. Для того чтобы разделить бинарную смесь компонентов, необходимо, чтобы они находились в колонке разное время. Однако даже время пребывания отдельных молекул одного и того же вещества в большей или меньшей степени отличается от среднего значения, характерного для этого вещества.

Причиной этому являются процессы диффузии, конвекции и замедленного обмена между подвижной и неподвижной фазами.

Насадочные колонки независимо от их внутреннего диаметра представляют собой трубки, заполненные частицами сорбента, которые образуют стационарный зернистый слой. Поток газа фильтруется через этот слой, двигаясь по транспортным каналам, образуемым зазорами между частицами. За счет разных по длине путей перемещения молекул разделяемых соединений возникает специфический размывающий ф актор, характеризуемый “вихревой” диффузией.

В

Рис. 12.

капиллярных колонках имеется единственный транспортный канал вдоль ее оси. В этой связи в капиллярных колонках “вихревая” диффузия отсутствует, но возникает другой размывающий фактор, связанный с параболическим распределением скоростей по сечению канала, характеризуемый так называемой “тейлоровской” диффузией.

Вследствие такого “рассеяния” времени пребывания в колонке отдельных молекул концентрация вещества на выходе из колонки изменяется во времени, при этом профиль концентрации подчиняется уравнению функции нормального распределения ошибок Гаусса, которое характеризует распределение концентрации исследуемого соединения C в пространстве в фиксированный момент времени “х” от времени положения максимума хроматографического пика

(20)

где Смакс– величина концентрации вещества в точке максимума пика, численное значение которой рассчитывается из уравнения (20) при х = 0 и равная коэффициенту перед экспоненциальным членом уравнения Гаусса

. (21)

Параметр в уравнениях (20) и (21) называется средним квадратичным отклонением, а величину называют дисперсией. Этот параметр характеризует степень размывания кривой распределения случайных ошибок, а в случае хроматографических разделений – ширину регистрируемого хроматографического пика у основания (рис. 13).

Ч тобы придать величине среднего квадратичного отклонения графическую интерпретацию, допустим, что в уравнении (20) отношение

.

Тогда с учетом уравнения можно записать:

.

Отсюда, приравнивая показатели экспонент, получим х = .

Это означает, что полуширина хроматографического пика, измеренная на высоте, составляющей 0.607 от максимальной высоты пика, равна среднеквадратичному отклонению .

Кривая Гаусса имеет колоколообразную форму: наряду с максимумом она имеет две точки перегиба. Если к этим точкам перегиба провести касательные, то величина отрезка, отсекаемого касательными на оси абсцисс, характеризует ширину хроматографического пика у основания ω и оказывается равной 4 (рис. 14).