
- •1. Понятие хроматографии. Основные цели и задачи.
- •2. Классификация хроматографических методов.
- •3. Элюентная хроматография.
- •4. Вытеснительная хроматография.
- •5. Фронтальная хроматография.
- •6. Хроматограмма. Основные характеристики хроматографического пика.
- •7. Основные характеристики удерживания и разделения компонентов на хроматограмме.
- •8. Основные закономерности сорбционных процессов. Фактор емкости и коэффициент извлечения.
- •9. Основные факторы размывания хроматографического пика.
- •10. Теория теоретических тарелок. Расчет вэтт и количества теоретических тарелок по хроматограмме.
- •11. Оценка эффективности и селективности хроматографической колонки.
- •12. Степень разделения компонентов и ее связь с параметрами хроматографической колонки.
- •13. Уравнение Ван-Деемтера для насадочной колонки.
- •14. Уравнение Голея для капиллярной колонки.
- •15. Определение оптимального значения скорости подвижной фазы.
- •16. Влияние температуры на размывание хроматографического пика.
- •17.Разделение компонентов в изотермическом режиме и режиме программирования температуры
- •18. Газовая хроматография. Общие понятия.
- •19. Общая схема газо-жидкостного хроматографа.
- •20.Хроматографические колонки применяемые в гжх.
- •21. Методика заполнения насадочной колонки для гжх.
- •22. Основные характеристики подвижной фазы.
- •23. Общие требования к устройствам ввода пробы в гжх
- •24 Ввод газообразных и твердых проб в гжх.
- •Ввод пробы
- •25. Ввод жидких проб в гжх
- •26. Детекторы в гжх, основные требования.
- •27. Интегральные и дифференциальные детекторы.
- •28. Потоковые и концентрационные детекторы
- •29.Характеристики детекторов (чувствительность, порог чувствительности)
- •30. Линейность, селективность детекторов
- •31.Общее устройство и принципиальная электрическая схема катарометра
- •32.Типы термочувствительных ячеек и элементов детектора по теплопроводности
- •33. Детектор по плотности.
- •34. Пламенно-фотометрический детектор
- •35. Вольтамперная характеристика ионизационных детекторов
- •36. Пламенно-ионизационный детектор
- •37. Детектор электронного захвата
- •38.Термоионный детектор. Гелиевый детектор
- •39. Фотоионизационный детектор
- •40. Газоадсорбционная хроматография. Силы взаимодействия сорбата и сорбента.
- •41.Класификация разделяемых веществ и сорбентов в газоадсорбционной хроматографии.
- •42. Газожидкостная храмотография. Требования к неподвижной фазе.
- •43.Классификация жидких фаз. Основные представления.
- •44. Классификация жидких фаз по величине относительно полярности.
- •45. Влияние количества жидкой фазы и толщины пленки на эффективность колонки.
- •46. Жидкостная хроматография. Общие положения.
- •47. Адсорбционная жидкостная хроматография.
- •48. Распределительная жидкостная хроматография.
- •49. Ионообменная, ионная, ион-парная хроматография.
- •50. Эксклюзионная хроматография.
- •51. Классифицируйте методы тонкослойной и бумажной хроматографии. Основные достоинства и недостатки.
- •53. Сверхкритическая флюидная хроматография.
- •54. Схема и принцип действия жидкостного хроматографа. Хроматографические колонки
- •55.Рефрактометрические детекторы
- •56.Фотометрические детекторы
- •57.Флуоресцентные детекторы
- •58.Электрохим., кондуктометр. И вольтамперометр. Детекторы
- •59. Качественный анализ в хроматографии. Основные цели и задачи,методы
- •60. Идентификация компонентов с использованием индексов удерживания Ковача.
- •61.Количественный анализ в хроматографии. Параметры пика используемые для количественного анализа.
- •62.Методы триангуляции. Измерение количественных параметров пиков различного разрешения.
- •63. Метод абсолютной калибровки и внутреннего стандарта
- •64. Методы нормирования площадей
- •65. Какие электрокинетические явления лежат в основе метода капиллярного электрофореза?
- •66.Общее устройство систем капиллярного электрофореза. Основные ограничения метода.
- •67.Какова эффективность разделения методом капиллярного электрофореза (число теоретических тарелок) и за счет какого фактора она в основном достигается?
- •68.В чем заключается явление стекинга и какова его физическая природа?
- •69.Каков физический смысл критической концентрации мицеллообразования (ккм)?
- •70.Каково строение мицеллы и ее собственного двойного электрического слоя (дэс)?
60. Идентификация компонентов с использованием индексов удерживания Ковача.
Суть этого метода заключается в использовании линейной зависимости между логарифмами объемов удерживания и числом углеродных атомов нормальных парафинов, выраженным индексами удерживания I.
При проведении качественного хроматографического анализа с использованием метода Ковача в одинаковых условиях измеряют удерживаемые объемы трех веществ идентифицируемого и двух нормальных алканов, различающихся по числу углеродных атомов на единицу. При этом н-алканы выбирают таким образом, чтобы удерживаемый объем идентифицируемого компонента имел промежуточное значение между соответствующими характеристиками н-алканов. Затем из графика (рис. 1.27) или по интерполяционной формуле
(1.56)
находят индекс удерживания идентифицируемого вещества и по справочным таблицам по величине индекса удерживания определяют, какому веществу принадлежит это значение.
Идентификация по индексам удерживания по сравнению с другими методами идентификации имеет следующие преимущества:
– в качестве стандарта используется не случайное вещество, а гомологический ряд нормальных углеводородов, благодаря чему точность и воспроизводимость определения индексов очень высокие. Кроме того, нормальные углеводороды наиболее доступны в качестве стандартных веществ;– значения индексов удерживания намного меньше зависят от температуры колонки, чем относительные удерживаемые объемы, что расширяет диапазон температур колонки, позволяющий проводить идентификацию;– при наличии литературных данных по индексам удерживания Ковача можно проводить качественный анализ без применения индивидуальных веществ.Однако результаты идентификации, полученные и методом Ковача, должны быть проверены другими независимыми методами.
61.Количественный анализ в хроматографии. Параметры пика используемые для количественного анализа.
Количественная интерпретация хроматограмм является одним из наиболее ответственных заключительных этапов хроматографического анализа.
Задачами количественной интерпретации хроматограмм в зависимости от целей и задач конкретного применения этого метода могут выступать:
1) количественное определение одного компонента или небольшого числа компонентов сложного многокомпонентного анализируемого продукта;
определение содержания одного или нескольких компонентов анализируемого многокомпонентного продукта и общего содержания остальных веществ;
определение полного количественного состава многокомпонентного вещества.
Использование хроматографии для контроля качества продукции в большинстве случаев представляет собой варианты решения аналитических задач I и II типа. В этих случаях, как правило, на подготовительной стадии определяемые компоненты анализируемого продукта выделяются из него каким-либо подходящим методом, чаще всего, методами экстракционного извлечения соответствующим экстрагентом, затем полученный экстракт подвергается очистке от мешающих разделению компонентов, ряду других операций, например, выделению из экстракта и растворению в подходящем растворителе, а затем хроматографической качественной идентификации, в основе которой лежит использование характеристик удерживания, и количественному определению, основанному на измерении площадей или высот соответствующих хроматографических пиков.
При проведении такого рода количественного анализа необходимо учитывать важность подбора оптимальных условий предварительной подготовки хроматографируемой пробы. Очень важно подобрать такой экстрагент, использование которого обеспечивало бы максимальную степень извлечения искомого(ых) компонента(ов) из многокомпонентного продукта, его высокую селективность по отношению к нему (ним), легкость удаления экстрагента и др.
Задачи количественного хроматографического анализа, относящиеся к III типу, решаются обычно при проведении комплексных научных исследований.
Точность результатов количественного хроматографического анализа может колебаться от десятых долей до нескольких десятков процентов и определяется поставленной задачей, выбором аппаратуры и условий проведения анализа, выбором определяющего параметра хроматограммы и точностью его измерения, выбором метода расчета хроматограммы и точностью использованных калибровочных коэффициентов. Важное значение имеет также качество самой хроматограммы, которое зависит от многих факторов, в частности:
от количества вводимой пробы и правильности ее введения. Для получения качественной хроматограммы проба перед началом элюирования должна находиться в колонке в виде узкой полосы, что обеспечивается, во-первых, оптимальным объемом вводимой пробы, который для предотвращения перегрузки колонки не должен превышать определенного значения, пропорционального корню квадратному из ее длины, и, во-вторых, надежностью дозирующего устройства;
правильности выбора колонки и режима ее работы. Должна быть подобрана такая колонка, которая обеспечивает не только полное разделение всех определяемых компонентов, но и достижение требуемой точности количественных результатов. Особое значение имеет стабильный температурный режим колонки;
чувствительности детектора;
оптимальности работы системы регистрации хроматограммы, которая должна обеспечивать равномерность движения диаграммной ленты в самописце. При этом если обсчет хроматограмм ведут по высоте пиков, скорость диаграммной ленты существенного значения не имеет, но когда обсчет ведется по площади пика, необходимо подобрать оптимальную скорость.
При количественном определении содержания какого-то компанента хроматографическим методом на хроматограмме анализируемой пробы по времени удерживания или удерживаемому объему методами, описанными в предыдущем разделе, идентифицируют пик определяемого компонента.
Параметром хроматографического пика называется величина, функционально связанная с количеством соответствующего данному пику вещества.
Эта величина может быть определена:
путем измерений на полученной хроматограмме;
путем непосредственной обработки выходного сигнала детектора.
На практике используют триосновных параметра хроматографического пика:
высота пика h;
произведение высоты пика h на время удерживания t или пропорциональное ему расстояние на хроматограмме от момента ввода пробы до регистрации максимума пика l, т.е. h t или h l;
площадь пика А или величины, приближенно характеризующие ее значение.