
- •1. Понятие хроматографии. Основные цели и задачи.
- •2. Классификация хроматографических методов.
- •3. Элюентная хроматография.
- •4. Вытеснительная хроматография.
- •5. Фронтальная хроматография.
- •6. Хроматограмма. Основные характеристики хроматографического пика.
- •7. Основные характеристики удерживания и разделения компонентов на хроматограмме.
- •8. Основные закономерности сорбционных процессов. Фактор емкости и коэффициент извлечения.
- •9. Основные факторы размывания хроматографического пика.
- •10. Теория теоретических тарелок. Расчет вэтт и количества теоретических тарелок по хроматограмме.
- •11. Оценка эффективности и селективности хроматографической колонки.
- •12. Степень разделения компонентов и ее связь с параметрами хроматографической колонки.
- •13. Уравнение Ван-Деемтера для насадочной колонки.
- •14. Уравнение Голея для капиллярной колонки.
- •15. Определение оптимального значения скорости подвижной фазы.
- •16. Влияние температуры на размывание хроматографического пика.
- •17.Разделение компонентов в изотермическом режиме и режиме программирования температуры
- •18. Газовая хроматография. Общие понятия.
- •19. Общая схема газо-жидкостного хроматографа.
- •20.Хроматографические колонки применяемые в гжх.
- •21. Методика заполнения насадочной колонки для гжх.
- •22. Основные характеристики подвижной фазы.
- •23. Общие требования к устройствам ввода пробы в гжх
- •24 Ввод газообразных и твердых проб в гжх.
- •Ввод пробы
- •25. Ввод жидких проб в гжх
- •26. Детекторы в гжх, основные требования.
- •27. Интегральные и дифференциальные детекторы.
- •28. Потоковые и концентрационные детекторы
- •29.Характеристики детекторов (чувствительность, порог чувствительности)
- •30. Линейность, селективность детекторов
- •31.Общее устройство и принципиальная электрическая схема катарометра
- •32.Типы термочувствительных ячеек и элементов детектора по теплопроводности
- •33. Детектор по плотности.
- •34. Пламенно-фотометрический детектор
- •35. Вольтамперная характеристика ионизационных детекторов
- •36. Пламенно-ионизационный детектор
- •37. Детектор электронного захвата
- •38.Термоионный детектор. Гелиевый детектор
- •39. Фотоионизационный детектор
- •40. Газоадсорбционная хроматография. Силы взаимодействия сорбата и сорбента.
- •41.Класификация разделяемых веществ и сорбентов в газоадсорбционной хроматографии.
- •42. Газожидкостная храмотография. Требования к неподвижной фазе.
- •43.Классификация жидких фаз. Основные представления.
- •44. Классификация жидких фаз по величине относительно полярности.
- •45. Влияние количества жидкой фазы и толщины пленки на эффективность колонки.
- •46. Жидкостная хроматография. Общие положения.
- •47. Адсорбционная жидкостная хроматография.
- •48. Распределительная жидкостная хроматография.
- •49. Ионообменная, ионная, ион-парная хроматография.
- •50. Эксклюзионная хроматография.
- •51. Классифицируйте методы тонкослойной и бумажной хроматографии. Основные достоинства и недостатки.
- •53. Сверхкритическая флюидная хроматография.
- •54. Схема и принцип действия жидкостного хроматографа. Хроматографические колонки
- •55.Рефрактометрические детекторы
- •56.Фотометрические детекторы
- •57.Флуоресцентные детекторы
- •58.Электрохим., кондуктометр. И вольтамперометр. Детекторы
- •59. Качественный анализ в хроматографии. Основные цели и задачи,методы
- •60. Идентификация компонентов с использованием индексов удерживания Ковача.
- •61.Количественный анализ в хроматографии. Параметры пика используемые для количественного анализа.
- •62.Методы триангуляции. Измерение количественных параметров пиков различного разрешения.
- •63. Метод абсолютной калибровки и внутреннего стандарта
- •64. Методы нормирования площадей
- •65. Какие электрокинетические явления лежат в основе метода капиллярного электрофореза?
- •66.Общее устройство систем капиллярного электрофореза. Основные ограничения метода.
- •67.Какова эффективность разделения методом капиллярного электрофореза (число теоретических тарелок) и за счет какого фактора она в основном достигается?
- •68.В чем заключается явление стекинга и какова его физическая природа?
- •69.Каков физический смысл критической концентрации мицеллообразования (ккм)?
- •70.Каково строение мицеллы и ее собственного двойного электрического слоя (дэс)?
50. Эксклюзионная хроматография.
Эксклюзионная хроматография представляет собой вариант жидкостной хроматографии, в котором разделение происходит за счет распределения молекул между растворителем, находящимся внутри пор сорбента, и растворителем, протекающим между его частицами.
В отличие от остальных вариантов ВЭЖХ, где разделение идет за счет различного взаимодействия компонентов с поверхностью сорбента, роль твердого наполнителя в эксклюзионной хроматографии заключается только в формировании пор определенного размера, а неподвижной фазой является растворитель, заполняющий эти поры. Поэтому применение термина «сорбент» к данным наполнителям в определенной степени условно.
Принципиальной особенностью метода является возможность разделения молекул по их размеру в растворе в диапазоне практически любых молекулярных масс – от 102 до 108, что делает его незаменимым для исследования синтетических и биополимеров.
По традиции процесс, проводимый в органических растворителях, все еще часто называют гель-проникающей, а в водных системах – гель-фильтрационной хроматографией.
Объем эксклюзионной колонки можно выразить суммой трех слагаемых:
Vс=Vо+Vi+Vd,
где Vо – мертвый объем – объем растворителя между частицами сорбента (объем подвижной фазы); Vi – объем пор, занятый растворителем (объем неподвижной фазы); Vd – объем матрицы сорбента без учета пор.
Полный объем растворителя в колонке Vt (его часто называют полным объемом колонки, так как Vd не принимает участия в хроматографическом процессе) представляет собой суммy объемов подвижной и неподвижной фаз:
Vt=Vо+Vi.
Удерживание молекул в эксклюзионной колонке определяется вероятностью их диффузии в поры и зависит от соотношения размеров молекул и пор, что схематически показано на рис. 2.15. Коэффициент распределения Kd, как и в других вариантах хроматографии, представляет собой отношение концентраций вещества в неподвижной и подвижной фазах:
Кd = Сi / Со.
Так как подвижная и неподвижная фазы имеют одинаковый состав, то Kd вещества, для которого обе фазы одинаково доступны, равен единице. Эта ситуация реализуется для молекул с самыми малыми размерами (в том числе и молекул растворителя), которые проникают во все поры (см. рис. 2.15) и поэтому движутся через колонку наиболее медленно. Их удерживаемый объем равен полному объему растворителя Vt.
Все молекулы, размер которых больше размера пор сорбента, не могут попасть в них (полная эксклюзия) и проходят по каналам между частицами. Они элюируются из колонки с одним и тем же удерживаемым объемом, равным объему подвижной фазы Vo. Коэффициент распределения для этих молекул равен нулю.
Молекулы промежуточного размера, способные проникать только в какую-то часть пор, удерживаются в колонке в соответствии с их размером. Коэффициент распределения этих молекул изменяется в пределах от нуля до единицы и характеризует долю объема пор, доступных для молекул данного размера. Их удерживаемый объем определяется суммой Vo и доступной части объема пор:
VR=Vo+KdVi.
Отсюда следует еще одно существенное отличие эксклюзионной хроматографии: в данном методе разделение заканчивается до выхода пика растворителя, в то время как в других вариантах ВЭЖХ компоненты смеси элюируются после пика растворителя.
Связь между удерживаемым объемом и молекулярной массой (или размером молекул) образца описывается калибровочной кривой (рис. 2). Каждый сорбент характеризуется своей калибровочной кривой, по которой легко оценить область разделяемых на нем молекулярных масс. Точка А соответствует пределу эксклюзии, или мертвому объему колонки Vo. Все молекулы, масса которых больше, чем в точке А, будут элюироваться одним пиком с удерживаемым объемом Vo. Точка В отражает предел проникания, и все молекулы, масса которых меньше, чем в точке В, также будут выходить из колонки одним пиком с удерживаемым объемом Vt. Между точками А и В располагается диапазон селективного разделения. Соответствующий ему объем Vi=Vt-Vo часто называют рабочим объемом колонки. Отрезок CD представляет собой линейный участок калибровочной кривой, построенной в координатах VR–IgM. Этот участок описывается уравнением
Vr = C1 – C2lgM,
где C1 – отрезок, отсекаемый на оси ординат продолжением отрезка СD, C2 – тангенс угла наклона этого отрезка к оси ординат.
Величину С2 называют разделительной емкостью колонки; ее выражают числом миллилитров растворителя, приходящегося на один порядок изменения молекулярной массы. Чем больше разделительная емкость, тем селективнее разделение в данном диапазоне масс. В нелинейных областях калибровочной кривой (участки АС и BD) в связи с уменьшением С2 эффективность фракционирования заметно снижается. Кроме того, нелинейная связь между IgM и Vr существенно усложняет обработку данных и снижает точность результатов. Поэтому всегда нужно стремиться выбирать колонку (или набор колонок) так, чтобы разделение анализируемого полимера протекало в пределах линейного участка калибровочной кривой.
Если какое-либо вещество элюируется с удерживаемым объемом больше Vt, то это указывает на проявление других механизмов разделения (чаще всего адсорбционного). Адсорбционные эффекты обычно проявляются на жестких сорбентах, но иногда наблюдаются и на полужестких гелях, видимо, из-за повышенного сродства к матрице геля. Примером может служить адсорбция ароматических соединений на стирол-дивинилбензольных гелях.
Рис. 2. Калибровочная кривая
Принципиальными отличиями эксклюзионной хроматографии от других вариантов являются заранее известная продолжительность анализа в конкретной используемой системе, возможность предсказания порядка элюирования компонентов по размеру их молекул, примерно одинаковая ширина пиков во всем диапазоне селективного разделения и уверенность в выходе всех компонентов пробы за достаточно короткий промежуток времени, соответствующий объему Vt. Хотя данный метод применяют, главным образом, для исследования ММР полимеров и анализа макромолекул биологического происхождения (белки, нуклеиновые кислоты и т.д.), указанные особенности делают его чрезвычайно перспективным для анализа низкомолекулярных примесей в полимерах и предварительного разделения проб неизвестного состава. Получаемая при этом информация существенно облегчает выбор наилучшего варианта ВЭЖХ для анализа данной пробы. Кроме того, микропрепаративное эксклюзионное разделение часто используют в качестве первого этапа при разделении сложных смесей путем комбинации различных видов ВЭЖХ.
Ограниченный диапазон коэффициентов распределения определяет и главный недостаток эксклюзионной хроматографии – заметно меньшее, чем в других вариантах ВЭЖХ, число пиков, которые могут быть полностью разделены на колонке заданной эффективности. Однако в последнее время благодаря успехам достигнутым в технологии изготовления высокоэффективных колонок, этот метод все шире применяют и для разделения малых молекул.
Выбор сорбентов, обеспечивающих оптимальные условия для решения конкретной аналитической задачи, проводят в несколько этапов. Первоначально на основе данных о химическом составе или растворимости анализируемых веществ устанавливают, какой вариант процесса следует применить – хроматографию в водных системах или в органических растворителях, что в значительной степени определяет тип необходимого сорбента.
Растворители, применяемые в эксклюзионной хроматографии, должны удовлетворять следующим основным требованиям:
1) полностью растворять образец при температуре разделения;
2) смачивать поверхность сорбента и не ухудшать эффективность колонки;
3) предотвращать адсорбцию (и другие взаимодействия) разделяемых веществ с поверхностью сорбента;
4) обеспечивать максимально высокую чувствительность детектирования;
5) иметь низкую вязкость и токсичность.
Кроме того, при анализе полимеров имеет существенное значение термодинамическое качество растворителя: весьма желательно, чтобы он был «хорошим» по отношению к разделяемому полимеру и матрице геля.
Растворимость образца обычно является главным лимитирующим фактором, ограничивающим ассортимент пригодных подвижных фаз. В приложении 3 указаны основные типы полимеров, которые целесообразно анализировать в тех или иных растворителях.