
- •1. Понятие хроматографии. Основные цели и задачи.
- •2. Классификация хроматографических методов.
- •3. Элюентная хроматография.
- •4. Вытеснительная хроматография.
- •5. Фронтальная хроматография.
- •6. Хроматограмма. Основные характеристики хроматографического пика.
- •7. Основные характеристики удерживания и разделения компонентов на хроматограмме.
- •8. Основные закономерности сорбционных процессов. Фактор емкости и коэффициент извлечения.
- •9. Основные факторы размывания хроматографического пика.
- •10. Теория теоретических тарелок. Расчет вэтт и количества теоретических тарелок по хроматограмме.
- •11. Оценка эффективности и селективности хроматографической колонки.
- •12. Степень разделения компонентов и ее связь с параметрами хроматографической колонки.
- •13. Уравнение Ван-Деемтера для насадочной колонки.
- •14. Уравнение Голея для капиллярной колонки.
- •15. Определение оптимального значения скорости подвижной фазы.
- •16. Влияние температуры на размывание хроматографического пика.
- •17.Разделение компонентов в изотермическом режиме и режиме программирования температуры
- •18. Газовая хроматография. Общие понятия.
- •19. Общая схема газо-жидкостного хроматографа.
- •20.Хроматографические колонки применяемые в гжх.
- •21. Методика заполнения насадочной колонки для гжх.
- •22. Основные характеристики подвижной фазы.
- •23. Общие требования к устройствам ввода пробы в гжх
- •24 Ввод газообразных и твердых проб в гжх.
- •Ввод пробы
- •25. Ввод жидких проб в гжх
- •26. Детекторы в гжх, основные требования.
- •27. Интегральные и дифференциальные детекторы.
- •28. Потоковые и концентрационные детекторы
- •29.Характеристики детекторов (чувствительность, порог чувствительности)
- •30. Линейность, селективность детекторов
- •31.Общее устройство и принципиальная электрическая схема катарометра
- •32.Типы термочувствительных ячеек и элементов детектора по теплопроводности
- •33. Детектор по плотности.
- •34. Пламенно-фотометрический детектор
- •35. Вольтамперная характеристика ионизационных детекторов
- •36. Пламенно-ионизационный детектор
- •37. Детектор электронного захвата
- •38.Термоионный детектор. Гелиевый детектор
- •39. Фотоионизационный детектор
- •40. Газоадсорбционная хроматография. Силы взаимодействия сорбата и сорбента.
- •41.Класификация разделяемых веществ и сорбентов в газоадсорбционной хроматографии.
- •42. Газожидкостная храмотография. Требования к неподвижной фазе.
- •43.Классификация жидких фаз. Основные представления.
- •44. Классификация жидких фаз по величине относительно полярности.
- •45. Влияние количества жидкой фазы и толщины пленки на эффективность колонки.
- •46. Жидкостная хроматография. Общие положения.
- •47. Адсорбционная жидкостная хроматография.
- •48. Распределительная жидкостная хроматография.
- •49. Ионообменная, ионная, ион-парная хроматография.
- •50. Эксклюзионная хроматография.
- •51. Классифицируйте методы тонкослойной и бумажной хроматографии. Основные достоинства и недостатки.
- •53. Сверхкритическая флюидная хроматография.
- •54. Схема и принцип действия жидкостного хроматографа. Хроматографические колонки
- •55.Рефрактометрические детекторы
- •56.Фотометрические детекторы
- •57.Флуоресцентные детекторы
- •58.Электрохим., кондуктометр. И вольтамперометр. Детекторы
- •59. Качественный анализ в хроматографии. Основные цели и задачи,методы
- •60. Идентификация компонентов с использованием индексов удерживания Ковача.
- •61.Количественный анализ в хроматографии. Параметры пика используемые для количественного анализа.
- •62.Методы триангуляции. Измерение количественных параметров пиков различного разрешения.
- •63. Метод абсолютной калибровки и внутреннего стандарта
- •64. Методы нормирования площадей
- •65. Какие электрокинетические явления лежат в основе метода капиллярного электрофореза?
- •66.Общее устройство систем капиллярного электрофореза. Основные ограничения метода.
- •67.Какова эффективность разделения методом капиллярного электрофореза (число теоретических тарелок) и за счет какого фактора она в основном достигается?
- •68.В чем заключается явление стекинга и какова его физическая природа?
- •69.Каков физический смысл критической концентрации мицеллообразования (ккм)?
- •70.Каково строение мицеллы и ее собственного двойного электрического слоя (дэс)?
32.Типы термочувствительных ячеек и элементов детектора по теплопроводности
Детектор по теплопроводности представляет собой массивный металлический блок, в цилиндрические отверстия (камеры) которого помещены чувствительные элементы— металлические спирали из тончайшей проволоки, закрепленные в кронштейне. Камеры детектора через входной и выходной каналы продуваются газом-носителем.
Ячейка детектора состоит из чувствительного элемента, помещенного в камеру блока детектора. Ячейки бывают: проточными, диффузионными и полудиффузионными. В проточной ячейке газовый поток омывает чувствительные элементы, в диффузионной — газовая смесь поступает к чувствительным элементам за счет диффузии через специальный канал. Полудиффузионная ячейка является промежуточной между проточной и диффузионной.
Детектор с диффузионной ячейкой обладает малой чувствительностью к изменениям скорости потока газа, но уступает детектору с проточными ячейками по чувствительности и быстродействию. В современных универсальных аналитических хроматографах в основном применяются детекторы по теплопроводности с полудиффузионными ячейками. Диффузионные детекторы по теплопроводности используются в препаративных хроматографах.
Чувствительные элементы чаще всего изготовляются в виде спиральных нитей диаметром 0,025-0,125 мм из материала с высоким температурным коэффициентом сопротивления (вольфрам, платина). Нити нагреваются постоянным током до температуры, превышающей температуру блока. Например, при использовании гелия в качестве газа-носителя и силе тока 200 мА температура нитей сопротивлением 50 Ом примерно на 100 °С выше температуры блока детектора.
Чувствительными элементами могут служить также термисторы, изготовленные из оксида марганца, никеля или кобальта в виде остеклованной бусинки диаметром 0,4 мм. Температурный коэффициент сопротивления термисторов примерно в 10 раз выше температурного коэффициента сопротивления платиновых или вольфрамовых нитей накала. При комнатной температуре термисторы значительно чувствительнее проволочных сопротивлений, но при повышении температуры их чувствительность заметно понижается (при нагревании на 30°С — в 2 раза), поэтому при температуре выше 100 °С рекомендуется использовать детекторы по теплопроводности с металлическими нитями накала.
33. Детектор по плотности.
Работа детектора по плотности основана на измерении давления в вертикальной трубке, заполненной газом, выходящим из хроматографич. колонки, при попадании в нее вместе с газом-носителем анализируемого вещества. Изменение давления в этом канале пропорционально изменению плотности газового потока. Достоинство: возможность про-ведения количественного анализа без калибровки детекто-ра. По интенсивности сигнала можно рассчитать содержание компонентов q в пробе, если площади пиков S умножить на поправоч. коэф-ты, которые связаны с молекулярными массами анализируемых веществ Ms и газа-носителя
Мr : q=bkS, где k = Ms /(MsMr); b - константа прибора.
Принцип действия универсального диафрагменного детектора состоит в том, что при прохождении через диафрагму газа, имеющего плотность ро, со скоростью ν0 перепад давления ΔР0 пропорционален плотности: ΔР0= А р0 ν02,
где А - постоянная диафрагмы.
Если скорость потока газа, проходящего через диафрагму, постоянна, а газ имеет плотность р, отличающуюся от р0, то перепад давления равен ΔР0 = А р0 ν02.
Дифференциальные ДД имеют две диафрагмы (рабочую и сравнительную), через которые протекает газ-носитель. При поступлении в рабочую камеру газа с молекулярной массой, отличающейся от молекулярной массы газа-носителя, возникает перепад давления, регистрируемый высокочувствительным манометром.