
- •1. Понятие хроматографии. Основные цели и задачи.
- •2. Классификация хроматографических методов.
- •3. Элюентная хроматография.
- •4. Вытеснительная хроматография.
- •5. Фронтальная хроматография.
- •6. Хроматограмма. Основные характеристики хроматографического пика.
- •7. Основные характеристики удерживания и разделения компонентов на хроматограмме.
- •8. Основные закономерности сорбционных процессов. Фактор емкости и коэффициент извлечения.
- •9. Основные факторы размывания хроматографического пика.
- •10. Теория теоретических тарелок. Расчет вэтт и количества теоретических тарелок по хроматограмме.
- •11. Оценка эффективности и селективности хроматографической колонки.
- •12. Степень разделения компонентов и ее связь с параметрами хроматографической колонки.
- •13. Уравнение Ван-Деемтера для насадочной колонки.
- •14. Уравнение Голея для капиллярной колонки.
- •15. Определение оптимального значения скорости подвижной фазы.
- •16. Влияние температуры на размывание хроматографического пика.
- •17.Разделение компонентов в изотермическом режиме и режиме программирования температуры
- •18. Газовая хроматография. Общие понятия.
- •19. Общая схема газо-жидкостного хроматографа.
- •20.Хроматографические колонки применяемые в гжх.
- •21. Методика заполнения насадочной колонки для гжх.
- •22. Основные характеристики подвижной фазы.
- •23. Общие требования к устройствам ввода пробы в гжх
- •24 Ввод газообразных и твердых проб в гжх.
- •Ввод пробы
- •25. Ввод жидких проб в гжх
- •26. Детекторы в гжх, основные требования.
- •27. Интегральные и дифференциальные детекторы.
- •28. Потоковые и концентрационные детекторы
- •29.Характеристики детекторов (чувствительность, порог чувствительности)
- •30. Линейность, селективность детекторов
- •31.Общее устройство и принципиальная электрическая схема катарометра
- •32.Типы термочувствительных ячеек и элементов детектора по теплопроводности
- •33. Детектор по плотности.
- •34. Пламенно-фотометрический детектор
- •35. Вольтамперная характеристика ионизационных детекторов
- •36. Пламенно-ионизационный детектор
- •37. Детектор электронного захвата
- •38.Термоионный детектор. Гелиевый детектор
- •39. Фотоионизационный детектор
- •40. Газоадсорбционная хроматография. Силы взаимодействия сорбата и сорбента.
- •41.Класификация разделяемых веществ и сорбентов в газоадсорбционной хроматографии.
- •42. Газожидкостная храмотография. Требования к неподвижной фазе.
- •43.Классификация жидких фаз. Основные представления.
- •44. Классификация жидких фаз по величине относительно полярности.
- •45. Влияние количества жидкой фазы и толщины пленки на эффективность колонки.
- •46. Жидкостная хроматография. Общие положения.
- •47. Адсорбционная жидкостная хроматография.
- •48. Распределительная жидкостная хроматография.
- •49. Ионообменная, ионная, ион-парная хроматография.
- •50. Эксклюзионная хроматография.
- •51. Классифицируйте методы тонкослойной и бумажной хроматографии. Основные достоинства и недостатки.
- •53. Сверхкритическая флюидная хроматография.
- •54. Схема и принцип действия жидкостного хроматографа. Хроматографические колонки
- •55.Рефрактометрические детекторы
- •56.Фотометрические детекторы
- •57.Флуоресцентные детекторы
- •58.Электрохим., кондуктометр. И вольтамперометр. Детекторы
- •59. Качественный анализ в хроматографии. Основные цели и задачи,методы
- •60. Идентификация компонентов с использованием индексов удерживания Ковача.
- •61.Количественный анализ в хроматографии. Параметры пика используемые для количественного анализа.
- •62.Методы триангуляции. Измерение количественных параметров пиков различного разрешения.
- •63. Метод абсолютной калибровки и внутреннего стандарта
- •64. Методы нормирования площадей
- •65. Какие электрокинетические явления лежат в основе метода капиллярного электрофореза?
- •66.Общее устройство систем капиллярного электрофореза. Основные ограничения метода.
- •67.Какова эффективность разделения методом капиллярного электрофореза (число теоретических тарелок) и за счет какого фактора она в основном достигается?
- •68.В чем заключается явление стекинга и какова его физическая природа?
- •69.Каков физический смысл критической концентрации мицеллообразования (ккм)?
- •70.Каково строение мицеллы и ее собственного двойного электрического слоя (дэс)?
23. Общие требования к устройствам ввода пробы в гжх
Устройства ввода пробы в хроматограф.
Дозатор это устройство для ввода в хроматографическую колонку газовой, жидкой или твердой анализируемой пробы. Дозатор должен удовлетворять следующим требованиям:
обеспечивать воспроизводимость величины пробы;
его внутренняя поверхность должна быть индифферентна к компонентам анализируемой пробы;
должен быть конструктивно прост, удобен в работе и дешев.
Правильный ввод пробы предполагает обязательное выполнение трех основных требований:
обеспечение минимального размывания пробы в системе ввода пробы;
обеспечение максимальной точности и воспроизводимости дозируемого количества образца;
обеспечение неизменности количественного и качественного состава смеси до и после дозирования.
Первое требование исходит из того, что в упрощенной теории линейной хроматографии идеальная модель исключает какое-либо размывание пробы в системе ввода, поскольку предполагается, что образец в начале хроматографической колонки занимает объем неподвижной фазы, эквивалентный одной теоретической тарелке.
Теоретическая тарелка характеризует такую часть колонки по высоте, на протяжении которой однократно реализуется процесс перехода исследуемого соединения из подвижной фазы в неподвижную и обратно.
На практике конечный объем пробы и конечное время дозирования препятствуют этому. Тем не менее при стремлении к идеальной модели следует вводить минимально возможные по объему пробы за минимально короткий промежуток времени.
Для практической нелинейной хроматографии мгновенный ввод пробы не всегда приводит к оптимальным результатам, поскольку чем выше концентрация компонента на слое сорбента, тем сильнее размывание полосы, когда изотерма адсорбции исследуемого соединения в этой области его концентраций нелинейна.
Таким образом, при мгновенном вводе пробы разбавление образца газом-носителем будет гораздо меньшим, чем при медленном дозировании, и, следовательно, в первом случае в колонку войдет узкая полоса с высокой концентрацией, а во втором – более широкая полоса с меньшей концентрацией.
Оптимальное соотношение этих двух противоположно действующих факторов – ширины полосы и концентрации, обусловленное степенью влияния каждого из них на размывание полосы, определяет время дозирования.
Следует учитывать, что существенное влияние на размывание пробы в системе ввода пробы оказывает конструкция дозатора. В соответствии с этим основными требованиями, предъявляемыми к конструкции дозатора, являются следующие:
минимальный внутренний объем дозатора;
отсутствие непродуваемых газом-носителем полостей во внутреннем объеме дозатора;
хорошо сформированный поток газа-носителя должен быстро переносить весь анализируемый образец непосредственно в колонку.
Второе требование к вводу пробы предполагает дозирование образца с высокой точностью и воспроизводимостью, поскольку хроматография является сравнительным методом анализа. Это требование усугубляется стремлением к вводу минимального количества образца, что на современном уровне составляет примерно 1 мкл газовой пробы и 0.05 мкл жидкой пробы.
Третье требование к вводу пробы предусматривает исключение изменения качественного состава пробы и количественного соотношения анализируемых компонентов в системе ввода, например, за счет разложения при контакте с нагретыми металлическими стенками испарителя, каталитических превращений, полимеризации, селективной сорбции.
В целях устранения этих помех следует:
использовать полностью стеклянные (еще лучше кварцевые) системы ввода пробы;
ввод пробы целесообразно осуществлять непосредственно в хроматографическую колонку;
температура зоны испарения обязательно должна быть выше температуры кипения самого высококипящего компонента.
Следует обязательно учитывать, что при недостаточно высокой температуре в зоне испарения образца может происходить процесс фракционирования пробы. При этом тяжелые компоненты пробы не могут испариться мгновенно, и поступающий в первый момент в колонку пар будет обеднен ими. В особых случаях температура испарителя может программироваться, если стоит задача фракционирования сложной по составу анализируемой смеси уже в испарителе.
Кроме отмеченных общих требований имеются и специфические требования к дозирующим устройствам для каждого из агрегатных состояний проб: газообразных, жидких, твердых.
В зависимости от агрегатного состояния анализируемой пробы используются различные способы их ввода.