
- •1.Классификация и конструкции резисторов.
- •2.Параметры резисторов. Номинальное сопротивление и его допустимое отклонение.
- •3.Специальные резисторы.
- •8.Температурная зависимость удельного сопротивления металлов
- •5.Параметры конденсаторов. Номинальная емкость и допустимое отклонение от номинала.
- •6.Катушки индуктивности
- •4.Дефекты кристаллического строения. Аморфные тела.
- •7.Трансформаторы
- •1.Классификация материалов. Проводники. Полупроводники. Диэлектрики. Магнитные материалы.
- •2.Виды химической связи.
- •12.ТермоЭдс. Эффект Зеебека. Эффект Пельтье. Эффект Томпсона.
- •3.Особенности строения твердых тел. Кристаллы. Индексы Миллера.
- •5.Зонная теория твердого тела.
- •7.Жидкие кристаллы в электронной технике.
- •6.Общие сведения о проводниках. Сверхпроводники.
- •16.Тугоплавкие металлы.
- •9.Сопротивление проводников на высоких частотах(вч).
- •10.Сопротивление тонких металлических пленок
- •11.Контактные явления в металлических проводниках
- •13.Термопары(тп). Материалы для термопар.
- •14.Материалы высокой проводимости.
- •15.Сплавы высокого сопротивления.
- •17.Благородные металлы.
- •19.Проводниковые материалы. Неметаллические проводники.
- •20. Припои и флюсы.
- •30.Диэлектрики. Поляризация. Диэлектрическая проницаемость. Поляризованность. Диэлектрическая восприимчивость.
- •21.Полупроводники. Собственные полупроводники.
- •22.Примесные полупроводники.
- •23. Температурная зависимость концентрации носителей заряда в полупроводнике
- •24. Температурная зависимость удельного сопротивления в полупроводнике.
- •32.Электронная поляризация
- •25.Эффект Холла в полупроводнике
- •26.Фотоэффект в полупроводнике
- •27. Полупроводниковые материалы. Германий.
- •28.Полупроводниковые материалы. Кремний.
- •29.Полупроводниковые материалы. Полупроводниковые соединения типа аiiibv. Полупроводниковые соединения типа аiibvi. Полупроводниковые соединения типа аivbvi.
- •31.Классификация диэлектриков по механизмам поляризации
- •33.Ионная поляризация
- •34. Дипольно-релаксационная поляризация
- •35. Ионно-релаксационная поляризация.
- •36.Спонтанная поляризация
- •37.Ток смещения в диэлектриках. Ток сквозной проводимости. Ток абсорбции. Ток утечки.
- •38.Электропроводность газообразных диэлектриков
- •40.Электропроводность твердых диэлектриков
- •41.Электропроводность полимерных диэлектриков
- •39.Электропроводность жидких диэлектриков
- •45.Релаксационные потери
- •43.Полные и удельные диэлектрические потери
- •44.Потери на электропроводность.
- •46.Пробивное напряжение и электрическая прочность диэлектриков. Электротепловой пробой
- •47.Пробой диэлектриков.
- •48.Диэлектрические материалы. Газообразные диэлектрики.
- •49.Диэлектрические материалы. Жидкие диэлектрики.
- •51.Диэлектрические материалы. Пластмассы и пленочные материалы.
- •52.Диэлектрические материалы. Стекло. Керамика.
- •50.Диэлектрические материалы. Синтетические полимеры.
- •53.Диэлектрические материалы. Активные диэлектрики.
- •54.Магнитные материалы. Магнитные характеристики.
- •55.Классификация веществ по магнитным свойствам.
- •56.Природа ферромагнетизма. Доменная структура.
- •57.Намагничивание магнитных материалов. Кривая намагничивания. Магнитный гистерезис.
- •58.Магнитомягкие материалы. Технически чистое железо. Электротехнические стали.
- •60.Аморфные магнитные материалы.
- •59.Магнитомягкие материалы. Пермаллои. Альсиферы. Магнитомягкие ферриты.
- •61.Магнитотвердые материалы
8.Температурная зависимость удельного сопротивления металлов
В чистых Ме
совершенной структуры единственной
причиной, ограничивающей длину свободного
пробега электронов(ДСПЭ), является
тепловое колебание атомов в узлах
кристаллической решётки. Электрическое
сопротивление Ме , обусловленное тепловым
фактором, обозначим через
.
Совершенно очевидно, что с ростом
температуры увеличиваются амплитуды
тепловых колебаний атомов и связанные
с ними флуктуации периодического поля
решётки. А это усиливает рассеяние
электронов и вызывает возрастание
удельного сопротивления.
ДСПЭ обратно
пропорциональна температуре:
=
,
где
-
коэф-т упругой связи, которая стремится
вернуть атом в положение равновесия,
N-число
чтомов в единице объёма.
Если Плавление Ме
сопровождается увеличением объёма, то
удел. сопр. скачкообразно возрастает,
у Ме с противоположным изменением объёма
происходит понижение
.
Относительное
изменение
при изменении тем-ры на 1К называют
температурным коэф-ом удельного сопр.
=
.
В области линейной зависимости
от t
выполняется:
=
(1+
(Т-
)).
Обычно при t=
C
составляет 0,004
.
5.Параметры конденсаторов. Номинальная емкость и допустимое отклонение от номинала.
Основной характеристикой конденсатора является его ёмкость, характеризующая способность конденсатора накапливать электрический заряд. В обозначении конденсатора фигурирует значение номинальной ёмкости, в то время как реальная ёмкость может значительно меняться в зависимости от многих факторов. Реальная ёмкость конденсатора определяет его электрические свойства. Так, по определению ёмкости, заряд на обкладке пропорционален напряжению между обкладками (q = CU). Типичные значения ёмкости конденсаторов составляют от единиц пикофарад до сотен микрофарад. Однако существуют конденсаторы с ёмкостью до десятков фарад.
Ёмкость плоского
конденсатора, состоящего из двух
параллельных металлических пластин
площадью каждая, расположенных на
расстоянии друг от друга, в системе СИ
выражается формулой:
ε — относительная диэлектрическая
проницаемость среды, заполняющей
пространство между пластинами. Для
получения больших ёмкостей конденсаторы
соединяют параллельно. При этом напряжение
между обкладками всех конденсаторов
одинаково. Общая ёмкость батареи
параллельно соединённых конденсаторов
равна сумме ёмкостей всех конденсаторов,
входящих в батарею.
Конденсаторы также характеризуются удельной ёмкостью — отношением ёмкости к объёму (или массе) диэлектрика. Максимальное значение удельной ёмкости достигается при минимальной толщине диэлектрика, однако при этом уменьшается его напряжение пробоя.
Плотность энергии электролитического конденсатора зависит от конструктивного исполнения. Максимальная плотность достигается у больших конденсаторов, где масса корпуса невелика по сравнению с массой обкладок и электролита.
Другой, не менее важной характеристикой конденсаторов является номинальное напряжение — значение напряжения, обозначенное на конденсаторе, при котором он может работать в заданных условиях в течение срока службы с сохранением параметров в допустимых пределах. Номинальное напряжение зависит от конструкции конденсатора и свойств применяемых материалов. При эксплуатации напряжение на конденсаторе не должно превышать номинального. Для многих типов конденсаторов с увеличением температуры допустимое напряжение снижается, что связано с увеличением тепловой скорости движения носителей заряда и, соответственно, снижению требований для образования электрического пробоя.
Многие конденсаторы с оксидным диэлектриком (электролитические) функционируют только при корректной полярности напряжения из-за химических особенностей взаимодействия электролита с диэлектриком. При обратной полярности напряжения электролитические конденсаторы обычно выходят из строя из-за химического разрушения диэлектрика с последующим увеличением тока, вскипанием электролита внутри и, как следствие, с вероятностью взрыва корпуса.
С течением времени конденсатор теряет энергию за счёт саморазряда.
Температурный
коэффициент ёмкости
(ТКЕ) — относительное изменение ёмкости
при изменении температуры окружающей
среды на один градус Цельсия (Кельвина).
Таким образом, значение ёмкости от
температуры представляется линейной
формулой:
где ΔT — увеличение температуры в °C или
°К относительно нормальных условий,
при которых специфицировано значение
ёмкости. TKE применяется для характеристики
конденсаторов со значительной линейной
зависимостью ёмкости от температуры.
Диэлектрическое поглощение. Если заряженный конденсатор быстро разрядить до нулевого напряжения путём подключения низкоомной нагрузки, а затем снять нагрузку и наблюдать за напряжением на выводах конденсатора, то мы увидим, что напряжение медленно повышается. Это явление получило название диэлектрическое поглощение или адсорбция электрического заряда. Конденсатор ведёт себя так, словно параллельно ему подключено множество последовательных RC-цепочек с различной постоянной времени. Интенсивность проявления этого эффекта зависит в основном от свойств диэлектрика конденсатора. Подобный эффект можно наблюдать и на большинстве электролитических конденсаторов, но в них он является следствием химических реакций между электролитом и обкладками. Наименьшим диэлектрическим поглощением обладают конденсаторы с органическими диэлектриками: тефлон (фторопласт), полистирол, полиэтилентерефталат, поликарбонат.