
- •1. Предмет и задачи пищевой химии. Понятия о пищевой и биологической ценности продуктов.
- •2. Общая характеристика пищевых продуктов, их классификация. Современные требования, предъявляемые к пищевым продуктам.
- •3. Состояние питания населения России. Основные пути увеличения продуктов питания и улучшения их качества.
- •4. Биологические функции аминокислот
- •5. Участие аминокислот в обмене веществ и технологических процессах.
- •6. Врождённые нарушения аминокислотного обмена у человека. Фенилкетонурия.
- •7. Пептиды и их функции.
- •1) Гормоны
- •2)Регуляторные пептиды
- •4) Иммунноактивные пептиды отвеч.За иммунитет, выраб.Железами
- •6) Вкусовые пептиды
- •8. Функции белков. Роль белков в питании человека. Нормы потребления белка.
- •9. Проблема белкового дефицита и пути её решения.
- •10. Пищевая и биологическая ценность белков. Незаменимые аминокислоты. Аминокислотный скор. Лимитирующие аминокислоты.
- •11. Проблема обогащения белков лимитирующими аминокислотами.
- •12. Белково-калорийная недостаточность и её последствия. Квашиоркор.
- •13. Нарушение переваривания белков пищи. Пищевые аллергии.
- •14. Новые формы белковой пищи. Основные задачи технологии пр-ва пищевого белка.
- •15. Запасные белки семян растений и их функции. Клейковина пшеницы. Факторы, определяющие качество клейковины.
- •16. Глиадин и глютенин пшеницы, их особенности. Значение электрофоретического спектра глиадина.
- •17. Белки семян бобовых культур, их питательная ценность, особенности белкового комплекса.
- •18. Белки семян масличных культур, их особенности и значение в питании человека.
- •19. Белки картофеля, их биологическая ценность.
- •20. Белки мяса. Показатели качества животного белка.
- •21. Белковые компоненты молока, их роль в питании человека.
- •22. Превращения белков в технологическом потоке.
- •23. Функциональные свойства белков пищевых продуктов.
- •1. Растворимость.
- •2. Водосвязывающая и жиросвязывающая способности.
- •3. Жироэмульгирующая и пенообразующая способности.
- •4. Гелеобразующая способность.
- •5. Плёнкообразующая способность, адгезионные свойства.
- •6. Реологические свойства.
- •7. Способность к прядению и текстурированию.
- •24. Методы определения белков в пищевых продуктах.
- •25. Физиологическая роль углеводов в организме человека.
- •27. Обмен углеводов в организме человека.
- •28. Неусваиваемые углеводы и их функции в организме человека. Пищевые источники неусваиваемых углеводов и потребности организма в них.
- •29. Гидролиз олиго- и полисахаридов. Способы гидролиза.
- •30. Ферментативный гидролиз крахмалсодержащего сырья. Факторы, влияющие на этот процесс.
- •31. Гидролиз некрахмалистых полисахаридов. Способы гидролиза и факторы, влияющие на этот процесс.
- •32. Превращения углеводов в сильнокислой среде. Влияние этих превращений на технологические процессы.
- •33. Реакции термической деградации и дегидратации углеводов. Значение этих реакций в пищевых технологиях.
- •34. Реакция образования коричневых продуктов: общая характеристика и значение для технологических процессов.
- •35. Реакция карамелизации и её значение при производстве пищевых продуктов.
- •36. Реакция меланоидинообразования. Факторы, влияющие на процесс мо.
- •37. Роль реакции меланоидинообразования в пищевых технологиях.
- •38. Спиртовое и молочнокислое брожение: химизм процесса и применение.
- •39. Функции моносахаридов в пищевой продукции.
- •40. Функции полисахаридов в пищевых продуктах.
- •41. Функции некрахмалистых полисахаридов в пищевых продуктах.
- •42. Методы определения углеводов в пищевых продуктах.
- •1. Моно- и олигосахариды
- •43. Липиды: классификация, пищевая и биологическая ценность.
- •44. Кислоты жиров и масел. Незаменимые высшие жирные кислоты, потребность организма в незаменимых высших жирных кислотах.
- •45. Полиненасыщенные жк: их пищевые источники и физиологическое значение.
- •46. Пищевые источники жиров и масел. Сравнительная характеристика содержания липидов в некоторых пищевых продуктах.
- •47. Фосфолипиды: химическая природа и физиологическая роль в организме человека. Потребности организма в фосфолипидах.
- •48. Превращения липидов при производстве продуктов питания.
- •49. Минеральные вещества в пищевых продуктах: общая характеристика и роль в питании человека.
- •50. Макро- и микроэлементы. Значение минеральных веществ для организма.
- •51. Минеральные вещества: классификация, значение для организма человека. Методы определения минеральных веществ.
- •52. Витамины, их классификация и роль в питании человека. Потребность человека в витаминах.
- •53. Влияние различных факторов на сохранность витаминов. Потери витаминов при хранении.
- •54. Содержание и общие причины потерь витаминов в пищевом сырье и готовых продуктах. Способы сохранения витаминов. Витаминизация пищи.
- •55. Методы определения витаминов в пищевых продуктах.
- •56. Основные окислительно-восстановительные ферменты биологического сырья (тирозиназа, липоксигеназа).
- •57. Основные гидролитические ферменты биологического сырья (липаза, гликозидазы, протеазы).
- •58. Применение ферментов в пищевых технологиях.
- •59. Вода, её роль в организме человека и функции в пищевых продуктах. Свободная и связанная влага.
- •60. Активность воды и стабильность пищевых продуктов. Влияние активности воды на скорость реакций в пищевых продуктах и рост микроорганизмов.
- •61. Пищевые продукты с высокой, промежуточной и низкой влажностью. Влияние воды на ферментативные процессы при хранении пищевого сырья и готовых продуктов.
- •62. Методы определения свободной и связанной влаги.
- •63. Особенности физиолого-биохимических процессов в биологическом сырье с неразрушенной клеточной структурой.
- •64. Интенсивность дыхания как интегральный показатель физиологического состояния биологического сырья.
- •65. Функции клеточного компартмента. Особенности биохимических процессов, протекающих в биологическом сырье с разрушенной клеточной структурой.
- •66. Строение и функции клеточных мембран. Уровни защиты клетки от окислительных процессов.
- •67. Современное состояние питания и задачи по его улучшению. Классификация пищевых веществ; макро- и микронутриенты.
- •68. Пищеварение: краткая характеристика, строение пищеварительной системы. Ферменты, принимающие участие в переваривание пищи.
- •69. Основные этапы деполимеризации макронутриентов в желудочно-кишечном тракте. Правило соответствия в пищеварении.
- •70. Деполимеризация основных макронутриентов в процессе пищеварения. Промежуточные и конечные продукты распада.
- •71. Деполимеризация макронутриентов в ротовой полости и желудке. Желудочный сок, пищеварительные ферменты желудочного сока и слюны.
- •72. Деполимеризация макронутриентов в кишечнике. Пищеварительные ферменты поджелудочного и кишечного соков, их основные функции.
- •73. Метаболизм углеводов в печени.
- •74. Метаболизм аминокислот в печени.
- •75. Метаболизм липидов в печени.
- •76. Основные теории науки о питании: краткая характеристика, основные отличия.
- •77. Пищевая ценность продуктов питания. Потребность человека в основных пищевых веществах и энергии.
- •78. Теория адекватного питания. Характеристика основных положений.
- •79. Принципы рационального питания: основные положения.
- •2. Оптмальное кол-во и соотношение пищевых веществ.
- •3. Режим питания
- •80. Первый принцип рационального питания, энергетическая ценность пищевых продуктов, коэффициенты энергетической ценности пищевых компонентов.
- •81. Классификация пищевых продуктов по энергетической ценности. Определение энергетической ценности пищевых продуктов.
- •82. Основные пути определения энергозатрат в организме. Коэффициенты физической активности.
- •83. Второй принцип рационального питания. Потребность организма в основных пищевых веществах. Показатели биологической ценности и биологической эффективности.
56. Основные окислительно-восстановительные ферменты биологического сырья (тирозиназа, липоксигеназа).
Тирозиназа-катализирует окисление тирозина кислородом с обр-ем меланинов.
С действием тирозиназы связано потемнение срезов картофеля, яблок, грибов, персиков и других растительных тканей. С целью предотвращения ферментативного потемнения плодов и овощей при их сушке, а также макаронных изделий в ходе их производства проводят тепловую инактивацию фермента путём бланшировки.
Липоксигеназа — катализирует окисление кислородом ПНЖК (линолевой, линоленовой) с обр-ем гидроперекисей, обладающих св-ами сильных окислителей.
Его выделили из зерна пшеницы, семян бобовых и масличных культур, клубней картофеля, плодов баклажана. Самым богатым источником явл. мука соевых бобов.
Липоксигеназе принадлежит важная роль в процессах созревания пшеничной муки, связанных с улучшением её хлебопекарных достоинств. Образующиеся под ее воздействием продукты окисления ЖК способны вызывать сопряжённое окисление ряда других компонентов муки — пигментов, SН-групп клейковинных белков, ферментов. При этом происходит осветление муки, укрепление клейковины, снижение активности протеолитических ферментов
В разных странах разработаны способы улучшения качества хлеба, основанные на использовании препаратов л. (главным образом л. соевой муки). Однако все эти способы требуют очень точного дозирования фермента, т.к. даже небольшая его передозировка приводит к отрицательному эффекту и вместо улучшения качества хлеба происходит его ухудшение.Чтобы избежать передозировки, исп. методы активации собственной л. пшеничной муки.
Использование л. для улучшения качества хлеба требует определённой осторожности, т.к. при интенсивном окислении этим ферментом свободных ЖК происходит образование различных веществ с неприятным вкусом и запахом, характерным для прогорклого продукта. Следует также помнить, что переокисленные жиры токсичны.
57. Основные гидролитические ферменты биологического сырья (липаза, гликозидазы, протеазы).
Гидролазы -расщепляют липиды, полисахариды, белки. До разрушения клетки гидролазы содержатся в лизосомах, а после её разрушения — осуществляют процесс автолиза. Наибольшее значение среди ферментов этого класса имеют эстеразы, гликозидазы и протеазы.
Эстеразы. К эстеразам относится ферм. липаза, катализирующий реакцию расщепления жиров с образованием глицерина и свободных ЖК. Накопление свободных ЖК явл. причиной роста кислотного числа жира. Эти кислоты легко подвергаются окислению под воздействием различных факторов. Т.о., липаза инициирует процесс прогоркания, что ограничивает сроки хранения пищевых продуктов.
Липаза также вызывает переэтерификацию триацилглицеринов, т.е. изменение их жирнокислотного состава, что можно использовать для получения новых форм жировых продуктов. Так, например, можно получать аналог дорогого масла какао из дешёвого исходного сырья.
Гликозидазы — расщепляют полисахариды.
Основной формой запасания углеводов является крахмал. Его ферментативные превращения лежат в основе многих пищевых технологий.
Интенсивность гидролиза крахмала в перерабатываемом сырье определяется взаимодействием многих факторов:
активностью амилаз, т.е. возможностью перехода связанной формы амилаз в свободную;
доступностью крахмала действию ферментов (атакуемостью субстрата), кот. зависит от соотношения мелких и крупных крахмальных зёрен, а также от содержания повреждённых гранул крахмала, которые легче поддаются действию ферментов;
высвобождением амилаз из связанного состояния под действием протеаз;
гидролизом той части запасных белков, которая прочно связана с поверхностью крахмальных зёрен, что облегчает доступ фермента к субстрату;
активностью системы белковых ингибиторов амилаз и протеаз, которые регулируют расщепление крахмала. Они образуют неактивные комплексы: Белковый ингибитор • Амилаза, Белковый ингибитор • Протеаза
В зерне пшеницы содержится двуцентровой ингибитор, который ингибирует активность и амилаз, и протеаз: Протеаза • Белковый ингибитор • Амилаза
Протеазы — расщепляют запасные белки до АК при прорастании семян.
Выделяют несколько типов протеаз, различающихся по оптимуму рН среды, в которой они проявляют свою каталитическую активность:
кислые протеиназы — рНopt 3,7–4,0;
нейтральные протеиназы — рНopt 6,5–7,0;
щелочные протеиназы— рНopt> 8,0.
Наиболее интересны нейтральные протеиназы. Они существенно более активны, чем прочие и эффективно расщепляют белки клейковины в тесте.
В созревших семенах пшеницы нейтральные протеиназы находятся в неактивном комплексе с белковыми ингибиторами. Это определяет стабильность белкового комплекса в водных суспензиях. Поэтому автолитические процессы в тесте выражены слабо.
При прорастании зерна происходит распад комплекса «Белковый ингибитор • Протеаза» и начинается интенсивный протеолиз запасных белков.