
- •1.Математика як наука і навчальний предмет. Історія розвитку математики. Роль математичних знань, умінь і навичок.
- •2.Математичні поняття і математичні речення.Об‘єм і зміст поняття.
- •3.Означення та їх структура. Вимоги до означень.
- •4 .Висловлюванні форми. Висловлення із словами "всі", "деякі" (квантори).
- •6. Відношення слідування і рівносильності між реченнями. Необхідні та достатні умови.
- •7.Структура та види теорем.
- •8.Дедуктивні міркування. Найпростіші схеми дедуктивних міркувань.
- •9.Неповна індукція. Способи доведення істинності висловлень.
- •11. Відношення між множинами. Круги Ейлера
- •12. Операції над множинами: переріз множин. Закони перерізу множин
- •13. Операції над множинами: об'єднання множин. Закони об’єднання множин.
- •14. Розподільні закони об'єднання та перерізу множин
- •15. Доповнення підмножин
- •16. Поняття розбиття множин на класи
- •17. Декартів добуток. Кортеж. Число елементів декартового добутку.
- •18. Зображення декартового добутку двох числових множин на координатній площині
- •19. Поняття відношення. Властивості відношень. Способи задання відношень
- •20. Відношення еквівалентності
- •21. Відношення порядку
- •22. Поняття відповідності. Відповідність обернена даній.
- •23. Взаємнооднозначні відповідності. Рівнопотужні площини.
- •24. Натуральні числа та їх властивості. Число нуль. Множина цілих невід`ємних чисел. Порядкові і кількісні натуральні числа. Лічба.
- •25. Теоретико-множинний зміст кількісного натурального числа і нуля.
- •26. Додавання цілих невід`ємних чисел. Теорема про існування і єдність суми.
- •33. Ділення цілих невід'ємних чисел. Означення ділення через теоретико-множинний зміст та через добуток.
- •34. Теорема про існування частки та її єдність. Теорема про неможливість ділення на нуль.
- •3. Існування частки, її єдиність
- •35. Правила ділення суми та різниці на число.
- •1. Правило ділення суми на число.
- •38. Позиційна і непозиційна система числення. Запис чисел в десятковій системі числення. Запис чисел в різних позиційних системах числення, відмінних від десяткової.
- •39. Додавання багатоцифрових чисел в десятковій системі числення. Алгоритм додавання багатоцифрових чисел.
- •40. Віднімання багатоцифрових чисел в десятковій системі числення. Алгоритм віднімання багатоцифрових чисел.
- •41. Множення багатоцифрових чисел в десятковій системі числення. Алгоритм множення багатоцифрових чисел.
- •42. Ділення багатоцифрових чисел в десятковій системі числення. Алгоритм ділення багатоцифрових чисел.
- •43. Поняття текстової задачі. Способи розв’язування текстових задач.
- •47 Алгебраїчний спосіб
- •55. Нсд. Його властивості та способи знаходження.
- •56. Нск Його властивості та способи знаходження
- •57. Алгоритм Евкліда
- •58. Поняття дробу. Поняття додатного раціонального числа. Рівні дроби.
- •59. Основна властивість дробу. Зведення до спільного знаменника. Скорочення.
- •60. Додавання і віднімання додатних раціональних чисел. Закони додавання.
- •61. Множення та ділення додатних раціональних чисел. Закони множення.
- •62. Впорядкованість множин додатних раціональних чисел.
- •63. 64 Запис додатних раціональних чисел у вигляді десяткового дробу. Нескінченні десяткові періодичні дроби.
- •65. Поняття про додатні ірраціональні числа
- •66.Поняття величини.Однорідні величини та величини різного роду.Властивості однорідних величин.
- •67.Вимірювання величин.Скалярні і векторні величини.Властивості скалярних величин.
- •68. Довжина відрізка,її вимірювання та властивості.
- •69. Площа фігури,її вимірювання та властивості.
- •70. Рівновеликі фігури.Вимірювання площі за допомогою палетки.
- •71.Маса тіла,її вимірювання та властивості.
- •72.Проміжки часу.Їх вимірювання та властивості.
- •73.Об’єм тіла,його вимірювання та властивості.
- •74.Залежності між величинами.
- •75.Числові вирази і вирази із змінними.Область визначення виразу.
- •76.Числові рівності і нерівності,їх властивості.
- •77.Тотожність. Тотожні перетворення виразів.
- •78.Рівняння з однією змінною: означення, корінь рівняння, що значить розв’язати рівнянні.
- •79.Рівносильні рівняння. Теореми про рівносильні рівняння.
- •80. Нерівність з однією змінною: означення, розв’язок нерівності, що означає розв’язати нерівність.
- •81. Рівносильні нерівності. Теореми про рівносильні нерівності.
- •82.Функція.Поняття функції. Область визначення функції. Область означення функції.
- •83. Графік функції. Зростаюча, спадна функція, приклад.
- •84. Лінійна функція, її графік, її властивості.
- •85.Прямо пропорційна функція, її графік і властивості.
- •86.Обернено пропорційна функція, її графік і властивості.
39. Додавання багатоцифрових чисел в десятковій системі числення. Алгоритм додавання багатоцифрових чисел.
Якщо числа а і в одноцифрові, то для обчислення суми цих чисел досить порахувати число елементів двох множин, які не перетинаються і які мають відповідно а і в елементів. Усі можливі суми, які дістають при додаванні одноцифрових чисел, утворюють таблицю додавання одноцифрових чисел. Її запам’ятовують і щоразу використовують при додаванні таких чисел.
При додаванні багатоцифрових чисел використовують правило додавання одноцифрових чисел. Такі числа подають ( або уявляють) у вигляді сум степенів числа 10 з коефіцієнтами, якими є цифри даних чисел. Наприклад: 1917 + 1991 = (1·103 + 9·102 + 1·10 + 7) + (1·103 + 9·102 + 9·10+ 1). Згрупуємо коефіцієнти відносно однакових степенів числа 10 і додамо їх, згідно з таблицею додавання одноцифрових чисел. Якщо сума коефіцієнтів менша за 10, то записують її в тому ж розряді; якщо сума більше від 10, то число її одиниць записують в тому ж розряді, а число десятків додають до вищого розряду.
Так, 1917 + 1991 = (1+1) ·103 + (9 + 9) ·102 + (1 + 9) · 10 + (7 +1) = 3908.
Для того щоб відповідні одиниці розрядів відразу згрупувати, треба числа записати стовпцем і виконати додавання цифр відповідних розрядів:
+ 1 9 1 7
1 9 9 1
3 9 0 8
У загальному вигляді алгоритм додавання багатоцифрових чисел такий:
1) другий доданок записують під першим так, щоб відповідні розряди знаходились один під одним;
2) додають цифри розряду одиниць; якщо сума менша 10, її записують у розряд одиниць результату і переходять до додавання цифр наступного розряду;
3) якщо сума цифр одиниць більша або дорівнює 10, то число її одиниць записують у розряд одиниць результату і додають одиницю до цифри десятків першого доданку, після чого переходять до додавання в розряді десятків;
4) аналогічні дії повторюють відносно десятків чисел, потім сотень і т.д.
40. Віднімання багатоцифрових чисел в десятковій системі числення. Алгоритм віднімання багатоцифрових чисел.
Віднімання числа b від числа а, які є в таблиці додавання, зводиться до знаходження такого числа с, щоб а = b + с. Віднімання інших чисел виконують стовпчиком, застосовуючи таблицю додавання одноцифрових чисел. Теоретичні основи цього алгоритму такі. Нехай від числа 453 треба відняти 231. Запишемо ці числа у вигляді степенів 10 і використаємо закони арифметичних операцій, а також таблицю додавання одноцифрових чисел. Тоді 453 – 231 = (4 – 2) · 102 + (5 – 3) · 10 + (3 – 1) = 222.
Як бачимо, віднімання таких чисел зводиться до віднімання одноцифрових чисел у відповідних розрядах за допомогою таблиці додавання. Якщо в деякому розряді зменшуваного одноцифрове число менше від числа в тому ж розряді від’ємника, то до цього числа додають 10, зменшивши на одну одиницю цифру вищого розряду. Після чого віднімають число відповідного розряду від’ємника. Наприклад, нехай від 451 треба відняти число 243.
Маємо 451 – 243 = (4 – 2) · 102 + (5 – 4) · 10 + (1 – 3) = (4 – 2) · 102 + (4 – - 4) · 10 + (11 – 3) = 208.
Для виконання віднімання стовпчиком підписують під зменшувальним від’ємник так, щоб відповідні розряди знаходились один під одним, і виконують віднімання, згідно з розглянутими випадками:
_453 _451
243
222 208
Таким чином, віднімання чисел зводиться до порозрядного віднімання одиниць, десятків, сотень і т. д., якщо цифри зменшувального більші за відповідні цифри від’ємника. Якщо в якомусь розряді зменшувального цифра менша від цифри відповідного розряду від’ємника, то беруть одиницю наступного вищого розряду, роздроблюють її в одиниці даного розряду, додають ці одиниці до одиниць даного розряду і віднімають відповідні одиниці розряду від’ємника.