
- •«Интеллектуальные информационные системы»
- •Лекция № 1 введение в дисциплину. Понятие интеллектуальной информационной системы
- •1. Введение. Структура, цели учебной дисциплины, методика ее изучения
- •2. Понятие интеллектуальной информационной системы (иис). Основные свойства
- •3. Классификация иис
- •«Интеллектуальные информационные системы»
- •Лекция № 2 особенности построения систем искусственного интеллекта
- •1. Формулировка концепции создания искусственного интеллекта
- •2. Определение систем искусственного интеллекта
- •Когнитивное моделирование.
- •3. Информационная модель реакции систем искусственного интеллекта на воздействия окружающей среды
- •4. Жизненный цикл системы искусственного интеллекта и критерии перехода между этапами этого цикла
- •Интеллектуальные информационные системы»
- •Системно-когнитивный анализ
- •1. Основные понятия когнитивной теории
- •2. Концепция системно-когнитивного анализа
- •2.1 Базовая когнитивная концепция
- •2.2 Когнитивная концепция в свободном изложении
- •2.3 Когнитивная концепция в формальном изложении
- •3. Когнитивное моделирование
- •«Интеллектуальные информационные системы»
- •Представление и обработка данных в рамках теории системно-когнитивного анализа
- •1. Основные понятия когнитивной теории
- •2. Концепция смысла Шенка-Абельсона
- •3. Диалектика «Структура – свойство – отношение» в рамках когнитивной теории
- •4. Понятия «факт», «смысл», «мысль» в рамках когнитивной теории
- •5. Иерархия задач обработки данных: «Мониторинг», «анализ», «прогнозирование», «управление» в рамках когнитивной теории
- •«Интеллектуальные информационные системы»
- •Модели представления знаний
- •1.Декларативные и процедурные знания
- •2. Логическая модель представления знаний
- •3. Сетевая модель представления знаний
- •4. Фреймовая модель представления знаний
- •5 Продукционная форма представления знаний
3. Когнитивное моделирование
Ведущей научной организацией России, занимающейся разработкой и применением технологии когнитивного анализа, является Институт проблем управления РАН, подразделение: Сектор-51, ученые Максимов В.И., Корноушенко Е.К., Качаев С.В., Григорян А.К. и другие. На их научных трудах в области когнитивного анализа и основывается данная лекция.
В основе технологии когнитивного анализа и моделирования (рисунок 86) лежит когнитивная (познавательно-целевая) структуризация знаний об объекте и внешней для него среды.
Когнитивная структуризация предметной области – это выявление будущих целевых и нежелательных состояний объекта управления и наиболее существенных (базисных) факторов управления и внешней среды, влияющих на переход объекта в эти состояния, а также установление на качественном уровне причинно-следственных связей между ними, с учетом взаимовлияния факторов друг на друга.
Результаты когнитивной структуризации отображаются с помощью когнитивной карты (модели).
|
Рисунок 4. Технология когнитивного анализа и моделирования |
«Интеллектуальные информационные системы»
Тема № 2
Системно-когнитивный анализ
Лекция № 4
Представление и обработка данных в рамках теории системно-когнитивного анализа
1. Введение. Структура, цели учебной дисциплины, методика ее изучения 2
2. Понятие интеллектуальной информационной системы (ИИС). Основные свойства 3
3. Классификация ИИС 6
1. Формулировка концепции создания искусственного интеллекта 9
2. Определение систем искусственного интеллекта 10
3. Информационная модель реакции систем искусственного интеллекта на воздействия окружающей среды 13
4. Жизненный цикл системы искусственного интеллекта и критерии перехода между этапами этого цикла 17
1. Основные понятия когнитивной теории 19
2. Концепция системно-когнитивного анализа 20
2.1 Базовая когнитивная концепция 20
2.2 Когнитивная концепция в свободном изложении 23
2.3 Когнитивная концепция в формальном изложении 25
3. Когнитивное моделирование 27
1. Основные понятия когнитивной теории 29
2. Концепция смысла Шенка-Абельсона 30
3. Диалектика «Структура – свойство – отношение» в рамках когнитивной теории 31
4. Понятия «факт», «смысл», «мысль» в рамках когнитивной теории 32
5. Иерархия задач обработки данных: «Мониторинг», «анализ», «прогнозирование», «управление» в рамках когнитивной теории 32
1.Декларативные и процедурные знания 34
2. Логическая модель представления знаний 34
3. Сетевая модель представления знаний 35
4. Фреймовая модель представления знаний 37
5 Продукционная форма представления знаний 38
1. Основные понятия когнитивной теории
Существует неопределенность смыслового содержания "разночтения" терминов: "данные", "информация", "знания". Мы считаем целесообразным определить их следующим образом.
Данные представляют собой информацию, рассматриваемую в чисто синтаксическом аспекте, т.е. безотносительно к ее содержанию и использованию, т.е. семантике и телеологии (обычно на каком-либо носителе или в канале передачи).
Информация – это данные, проинтерпретированные с использованием тезауруса, т.е. осмысленные данные, рассматриваемые в единстве синтаксического и семантического аспектов.
Знания, есть система информации, обеспечивающая увеличение вероятности достижения какой-либо цели, т.е. по сути знания – это "Ноу-хау" или технологии.
Вышесказанное резюмируем в следующей форме:
знание = информация + цель
информация = данные + смысл;
знания = данные + смысл + цель.
От того, какое конкретное содержание вкладывается разработчиками в данные понятия, самым существенным образом зависят и подходы к созданию математических моделей, структур данных и алгоритмов функционирования СИИ.
Проблема состоит в том, что смысловое содержание этих понятий чаще всего не конкретизируется.
И это не случайно. Одной из основных причин этого положения дел, на наш взгляд, является то, что конкретизировать смысловое содержание данных понятий представляется возможным лишь на основе интуитивно-ясной и хорошо обоснованной концепции смысла.
Конечно, возникает вопрос о том, насколько вообще возможны, т.е. имеют смысл концепции смысла, не бессмысленны ли они? Может быть вопрос: "Какой смысл имеют концепции смысла?" – является одним из вариантов логического парадокса Рассела? Хотя эти вопросы имеют "несерьезный" оттенок, по сути, они сводятся к очень серьезному вопросу о том, насколько или в какой степени интеллект может познать сам себя, т.е. о том, является интеллектуальная форма познания адекватным инструментом для познания интеллекта?