
- •1.Множества. Основные понятия. Операции над множествами
- •2.Числовые множества
- •3.Числовые промежутки. Понятие окрестности точки.
- •4.Понятие функции. Способы задания функции. Основные характеристики функции
- •5.Обратная функция. Сложная функция
- •6. Числовая последовательность. Предел числовой последовательности
- •8.Предел монотонной неограниченной последовательности. Теорема Вейерштрасса.
- •9. Предел функции в точке. Односторонние пределы.
- •16.2. Односторонние пределы
- •10. Бесконечно малые функции: определение и основные теоремы
- •17.2. Связь между функцией, ее пределом и бесконечно малой функцией
- •11.Связь между функцией, ее пределом и бесконечно малой функцией.
- •12.Основные теоремы о пределах
- •13. Признаки существования пределов. Теоремы о пределе промежуточной функции и о пределе монотонной функции.
- •14. Первый замечательный предел
- •15. Второй замечательный предел
- •16. Непрерывность функции в точке, в интервале, на отрезке.
- •17. Точки разрыва функции и их классификация.
- •18.Основные теоремы о непрерывных функциях. Непрерывность элементарных функций
- •Непрерывность элементарных функций
- •19.Свойства функций, непрерывных на отрезке.
- •20.Определение производной, ее геометрический и экономический смысл.
- •21. Связь между непрерывностью и дифференцируемостью функций.
- •22. Производные суммы, разности, произведения и частного
- •23.Производные сложной функции
- •24.Производные основных элементарных функций
- •25. Возрастание и убывание функций
- •26. Максимум и минимум функций. Необходимое и достаточное условие экстремума
- •27. Выпуклость графика функции. Точки перегиба
- •28.Общая схема исследования функции и построения графика
- •29. Понятие неопределенного интеграла
- •30.Свойства неопределенного интеграла
- •31. Таблица основных неопределенных интегралов
- •32. Метод непосредственного интегрирования
- •33. Метод интегрирования подстановкой (заменой переменной)
- •34. Метод интегрирования по частям
- •35. Понятия о рациональных функциях
- •36. Интегрирование простейших рациональных дробей
- •37. Интегрирование тригонометрических функций. Универсальная тригонометрическая подстановка
- •38. Определенный интеграл как предел интегральной суммы
- •39. Геометрический смысл определенного интеграла
- •40. Формула Ньютона-Лейбница
- •41. Основные свойства определенного интеграла
- •42. Вычисления определенного интеграла Формула Ньютона-Лейбница.
- •Замена переменной в определенном интеграле.
- •Интегрирование по частям при вычислении определенного интеграла.
- •43. Несобственные интегралы. Интеграл с бесконечным промежутком интегрирования(несобственный интеграл I рода). Интеграл от разрывной функции (несобственный интеграл II рода)
- •44. Функции нескольких переменных, область определения.
- •45. Производные и дифференциалы функций нескольких переменных.
- •46. Экстремум функций многих переменных.
- •47. Условный экстремум. Метод множителей Лагранжа.
16.2. Односторонние пределы
В определении предела функции считается, что х стремится к x0 любым способом: оставаясь меньшим, чем x0 (слева от х0), большим, чем хо (справа от хо), или колеблясь около точки x0.
Бывают случаи, когда способ приближения аргумента х к хо существенно влияет на значение придела функции. Поэтому вводят понятия односторонних пределов.
Число А1 называется пределом функции у=ƒ(х) слева в точке хо, если для любого число ε>0 существует число δ=δ(ε)> 0 такое, что при х є (х0-δ;xo), выполняется неравенство |ƒ(х)-А|<ε. Предел слева записывают так: limƒ(х)=А при х–>х0-0 или коротко: ƒ(хо-0)=А1 (обозначение Дирихле) (см. рис. 111).
Аналогично определяется предел функции справа, запишем его с помощью символов:
Коротко предел справа обозначают ƒ(хо+0)=А.
Пределы функции слева и справа называются односторонними пределами. Очевидно, если существует , то существуют и оба односторонних предела, причем А=А1=А2.
Справедливо и обратное утверждение: если существуют оба предела ƒ(х0-0) и ƒ(х0+0) и они равны, то существует предел и А=ƒ(х0-0).
Если же А1¹А2, то етот придел не существует.
10. Бесконечно малые функции: определение и основные теоремы
Функция у=f(х) назівается бесконечно малой при х→x0,если
По определению предела функции равенство (17.1) означает: для любого числа ε>0 найдется число δ>0 такое, что для всех х, удовлетворяющих неравенству 0<|х-x0|<δ, выполняется неравенство |ƒ(х)|<ε.
Аналогично определяется б.м.ф. при х→хо+0, х→x0-0, х→+∞, х→-∞: во всех этих случаях ƒ(х)→0.
Бесконечно малые функции часто называют бесконечно малыми величинами или бесконечно малыми; обозначают обычно греческими буквами α, ß и т. д.
Теорема 17.1. Алгебраическая сумма конечного числа бесконечно малых функций есть бесконечно малая функция.
▼Пусть α(х) и ß(х) — две б.м. функции при х→хо. Это значит, что lim α(х)=0, при х→х0 т.е. для любого ε>0, а значит, и ε/2>0 найдется число δ1>0 такое, что для всех х, удовлетворяющих неравенству 0<|х-х0|<δ1, выполняется неравенство
Пусть δ — наименьшее из чисел δ1 и δ2.Тогда для всех х, удовлетворяющих неравенству 0<|х-хо|<δ, выполняются оба неравенства (17.2) и (17.3). Следовательно, имеет место соотношение
Таким
образом
Аналогично проводится доказательство для любого конечного числа б.м. функций.
Теорема 17.2 Произведение ограниченной функции на бесконечно малую функцию есть функция бесконечно малая.
▼ Пусть функция ƒ(х) ограничена при х→хо. Тогда существует такое число М>0, что
для
всех х из δ1-окрестности
точки хо.
И пусть α(х)—б.м.ф. при х→x0.
Тогда для любого ε >0,
а значит, и ε /М>
0 найдется такое число δ2>О,
что при всех х, удовлетворяющих неравенству
0<|х-хо|<δ2,
выполняется неравенство
Обозначим через δ наименьшее из чисел δ1 и δ2. Тогда для всех х, удовлетворяющих неравенству 0<|х-хо|<δ, выполняются оба неравенства (17.4) и (17.5). Следовательно, |ƒ(х)-α(х)|=|ƒ(х)|-|а(х)|<ε.
А это означает, что произведение ƒ(х)•α(х) при х→х0 есть бесконечно малая функция.▲
Следствие 17.1. Так как всякая б.м.ф. ограничена, то из теоремы (17.2) вытекает: произведение двух б.м.ф. есть функция бесконечно малая.
Следствие 17.2. Произведение б.м.ф. на число есть функция бесконечно малая.
Теорема 17.3. Частное от деления бесконечно малой функции на функцию, имеющую отличный от нуля предел, есть функция бесконечно малая.
Теорема 17.4 . Если функция α(х) — бесконечно малая (α¹ 0), то функция 1/α(х) есть бесконечно большая функция и наоборот: если функция ƒ(х)— бесконечно большая, то 1/ƒ(х) — бесконечно малая.
А это означает, что функция 1/α(х) есть бесконечно большая. Аналогично доказывается обратное α(х) утверждение.▲
Замечание: Доказательства теорем приводились для случая, когда х → хо, но они справедливы и для случая, когда х→∞.
<< Пример 17.1
Показать, что функция
при х→1 является бесконечно малой.