Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Элементы кв. мех. Трофимова на 4 с-р.doc
Скачиваний:
1
Добавлен:
01.05.2025
Размер:
1.31 Mб
Скачать

6.58 Следствия уравнения Шредингера для квантового осциллятора________________

Собственные значения энергии__________________________________________________

Уравнение Шредингера имеет однозначные, конечные и непрерывные решения только при таких Еп, т. е. энергия квантового осциллятора может иметь лишь дискретные решения (квантуется).

0 — собственная частота колебаний осциллятора; — постоянная Планка; Еп — собственные значения энергии; Е0 — энергия нулевых колебаний]

Расстояние между соседними уровнями___________________________________________

У ровни энергии линейного гармонического осциллятора расположены на одинаковых расстояниях друг от друга (на рисунке 6.59 они изображены горизонтальными прямыми)

Энергия нулевых колебаний___________________________________________________

Е е существование типично для квантовых систем; следствие соотношения неопределенностей: частица не может находиться на дне потенциальной ямы независимо от ее формы. Если бы это было возможно, то импульс, а также его неопределенность, обращались бы в нуль. Тогда неопределенность координаты , что противоречит пребыванию час­тицы в потенциальной яме.

6.59 Плотности вероятности обнаружения частицы______________________________

П редставлены кривые распреде­ления плотности вероятности |\|/п(х)|2 для различных состояний квантового осциллятора (для п = 0, 1 и 2). В точках А и А', Вй В', С и С потенциальная энергия равна полной энергии (U = Е), причем, как известно, классиче­ский осциллятор не может вый­ти за пределы этих точек. Для квантового осциллятора и за пределами этих точек имеет конечные значения. Последнее означает, что имеется конечная, хотя и небольшая, вероятность обнаружить частицу за предела­ми потенциальной ямы. Область, запрещенная

Этот результат не противоречит выводам кван­товой классической механикой

механики, так как равенство Т = Е -U в квантовой механике не имеет силы, поскольку кинетическая (Т) и потенциальная (U) энергии не являются одновременно измеримыми величинами

.

6.60 Плотности вероятности

для квантового и классического осцилляторов___________________________________

На рисунке — кривая распределения При больших значениях п квантовое рас- плотности вероятности для кванто- пределение плотности вероятности (сплош- вого (сплошная кривая) и классиче- ная кривая) принимает все большее сход- ского (пунктир) осциллятора. Поведе- ство с классическим распределением плот- ние квантового осциллятора значи- ности вероятности (пунктир). В этом про- тельно отличается от классического является принцип соответствия Бора

Принцип соответствия Бора _____

Выводы и законы квантовой механики при больших значениях квантовых чисел должны соответствовать выводам и законам классической физики.

326