
- •6.2. Элементы квантовой механики
- •6.2.1. Гипотеза де бройля. Волны де бройля
- •6. 13 Универсальность корпускулярно-волнового дуализма
- •6. 14 Длина волны де Бройля___________________________________________________
- •6. 15 Экспериментальное подтверждение
- •6. 16 Плоская волна де Бройля_________________________________________________________
- •6. 17 Свойства волн де Бройля _____________________________________
- •6.2.2. Соотношение неопределенностей гейзенберга
- •6.21 Статистическая интерпретация волновой функции_________________
- •6.22 Физический смысл ψ-функции________________________________
- •6.23 Принцип суперпозиции состояний для волновых функций_________
- •6.24 Основное уравнение нерелятивистской квантовой механики___________________
- •6.25 Стационарное уравнение Шредингера________________________________________
- •6.2.5. Операторы в квантовой механике и их свойства
- •6.26 Математический аппарат квантовой механики___________________________________
- •6.27 Свойства операторов_________________________________________________________________
- •6.28 Линейные и эрмитовы операторы_______________________________________________
- •6.29 Свойства собственных функций______________________________________________
- •6.30 Обобщенный ряд Фурье_____________________________________________________
- •6.34 Операторы координаты и импульса___________________________________________
- •6.35 Операторы момента импульса______________________________________________________
- •6.36 Уравнения для собственных значений операторов и _______________________
- •6.37 Операторы энергии____________________________________________________________
- •6.38 Уравнение Шредингера в операторной форме__________________________________
- •6.2.7. Движение свободной частицы
- •6.38 Уравнение Шредингера для стационарных состояний ______________________
- •6.39 Потенциальная яма с бесконечно высокими стенками_________________________
- •6.40 Решение уравнения Шредингера для частицы в яме_____________________________
- •6.41 Энергетический спектр частицы_______________________________________________
- •6.42 Собственные функции и плотности вероятности
- •6.2.9. Отражение и прохождение
- •6.43 Прямоугольный бесконечно протяженный порог______________________________
- •6.45 Коэффициенты отражения и прозрачности____________________________________
- •6.2.10. Потенциальный барьер конечной ширины.
- •6.49 Потенциальный барьер конечной ширины___________________________________
- •6.50 Энергия частицы больше высоты потенциального барьера_____________________
- •6.51 Возможное определение коэффициентов отражения и прозрачности
- •6.52 Энергия частицы
- •6.53 Туннельный эффект________________________________________________________________
- •6.54 Коэффициент прозрачности для прямоугольного барьера______________________
- •6.55 Коэффициент прозрачности для барьера произвольной формы ___________
- •6.56 Выводы относительно поведения классической
- •6.2.11. Линейный гармонический осциллятор
- •6.57 Описание гармонического осциллятора в квантовой механике_________________
- •6.58 Следствия уравнения Шредингера для квантового осциллятора________________
- •6.59 Плотности вероятности обнаружения частицы______________________________
- •6.60 Плотности вероятности
6.2. Элементы квантовой механики
6.2.1. Гипотеза де бройля. Волны де бройля
6. 13 Универсальность корпускулярно-волнового дуализма
______________________________________________________________________________________
Гипотеза де Бройля_______________________________________________________________
Корпускулярно-волновой дуализм имеет универсальный характер и распространяется не только на фотоны, но и на все частицы материи: частицы вещества (в частности, электроны) обладают наряду с корпускулярными также и волновыми свойствами.
307
Уравнения, связывающие корпускулярные свойства (энергия и импульс) и волновые (частота (длина волны)) характеристики микрочастиц_____________________________
Формулы такие же,
что и для фотона.
[
к
— волновое
число;
постоянная Планка;
циклическая частота]
6. 14 Длина волны де Бройля___________________________________________________
[h — постоянная Планка; р — импульс; т — масса частицы; υ — скорость частицы; Т — кинетическая энергия частицы; с — скорость распространения света в вакууме; Е — полная энергия частицы]
6. 15 Экспериментальное подтверждение
волновых свойств микрочастиц_____________________________________________
Опыты Девиссона и Джермера___________________________________________________
Пучок электронов, рассеивающийся от естественной дифракционной решетки — кристалла никеля, дает отчетливую дифракционную картину. Дифракционные максимумы соответствовали формуле Вульфа— Брэггов 5.50, а брэгговская длина волны оказалась в точности равной длине волны, вычисленной по формуле X = Н/р.
Опыты Тартаковского и Томсона________________________________________________
Наблюдалась дифракционная картина при прохождении пучка быстрых электронов (« 50 кэВ) через металлическую фольгу (толщиной » 1 мкм).
Опыты Тартаковского__________________________________________________________
Даже в случае столь слабого электронного пучка, когда каждый электрон проходит через прибор независимо от других (промежуток времени между двумя электронами в 104 раз больше времени прохождения электроном прибора), возникающая при длительной экспозиции дифракционная картина не отличается от дифракционных картин, получаемых при короткой экспозиции для потоков электронов, в десятки миллионов раз
308
более интенсивных. Следовательно, волновые свойства частиц не являются свойством их коллектива, а присущи каждой частице в отдельности.
♦ Дифракционные явления обнаружены также для нейтронов, протонов, атомных и молекулярных пучков. Это окончательно послужило доказательством наличия волновых свойств микрочастиц и позволило описывать движение микрочастиц в виде волнового процесса, характеризующегося определенной длиной волны, рассчитываемой по формуле де Бройля.
6. 16 Плоская волна де Бройля_________________________________________________________
С
огласно
корпускулярно-волновому дуализму
материи и гипотезе де Бройля, с
движением частицы, обладающей определенны
ми энергией
и импульсом,
связывается плоская
волна де Бройля.
Рассмотрен
одномерный случай. Уравнение плоской
волны, распространяющейся вдоль оси х,
имеет вид
или в комплексной записи
.
При записи
плоской волны де Бройля учтено, что
(ω — циклическая частота, k
— волновое
число). Показатель экспоненты в плоской
волне де Бройля берется со знаком минус,
но это несущественно, так как физический
смысл имеет
6.22
.