- •1. Исторический обзор развития паровых турбин. Турбины Герона, Лаваля, Парсонса, и их конструктивные особенности.
- •31. Схема газотурбинной установки и ее реальный цикл. Внутренний кпд гту. Коэф. Избытка воздуха.
- •2. Принципиальная схема теплоэнергетической установки и ее" цикл в t-s (Ренкина) Абсолютный кпд идеальной установки с учетом и без учета роботы насоса.
- •33.Достоинства и недостатки паротурбинных и газотурбинных установок.
- •4. Влияние параметров пара на абсолютный кпд пту. Понятие эквивалентной температуры при замене цикла Ренкина циклом Карно. Промежуточный перегрев пара.
- •34. Турбина с длинными лопатками. Закрутка лопаток. Закон закрутки с постоянством циркуляции (вывод формулы).
- •5. Принципиальные схемы турбин для комбинированной выработки тепловой и электрической энергии.
- •35.Турбинные решетки осевых турбин,их геометрические параметры(сопловые,рабочие)
- •6. Формулы расчета характеристик решеток
- •36.Многоступенчатая турбина активного типа и процесс расширения в ней в h-s диаграмме . Коэффициент возврата теплоты.
- •7. Многоступенчатая турбина реактивного типа и процесс расширения в ней в h-s диаграмме. Расчет диаметров последней и первой ступеней.
- •37.Особенности пуска, остановка и эксплуатация турбин.
- •8.Схема установки с турбиной конденсационной и с турбиной с противодавлением
- •38.Геометрические характеристики решеток сопловых и рабочих(….)Графики зависимости эффективного угла выхода от относительного шага и угла установки профиля.
- •9. Формулы расчета площади выхода потока из решетки и площади минимального сечения для сверхзвуковых сопловых решеток.
- •39.Турбины с отопительным отбором пара нерегулируемого давления.
- •10. Турбинная ступень. Степень реактивности. Процесс расширения пара в решетках ступени в h, s - диаграмме (h0, h0c, h0p, w12/2).
- •40.Треугольники скоростей (совмещенные) турбинной ступени.
- •11. Профили лопаток ступени, входной и выходной треугольники скоростей. Силы, действующие на рабочую лопатку(окружная, осевая)
- •41. Характеристики плоских решеток.
- •42. Переменные режимы работы турбины. Треугольники скоростей при расчетном и уменьшенном теплоперепаде.
- •13. Формула Флюгеля-Стадола определение давления пара в местах дополнительного его отбора из турбины
- •43. Способы регулирования расхода пара через турбину
- •14. Принципиальная схема регулятора расхода пара через турбину для обеспечения постоянства ее оборотов. Устройство автомата для машины от чрезмерного повышения
- •44. Относительный лопаточный кпд ηол. Его расчет для активной ступени, график потерь в турбине от u/cф.
- •15. Относительный лопаточный кпд ηол. Его расчет для реактивной ступени, график потерь в турбине в зависимости от u/cф.
- •45. Определение основных размеров ступени турбины.
- •16. Течение влажного пара в турбинных решетках. Возможные траектории влаги. Треугольники скоростей пара и капель. Оценочная формула потерь от влажности.Потери от влажности пара.
- •46.Критерии для анализа переменного режима работы турбины. График зависимости расхода g пара через турбинную решетку от давления р1 за ней при заданном р0 перед ней.
- •17. Основные элементы конденсационного устройства паротурбинной установки. Цель отсасывания воздушно- паровой смеси из конденсатора.
- •47. Тепловые схемы аэс. Процесс расширения в турбине насыщенного пара (сепарация, пароперегрев).
- •18.Тепловой расчет конденсатора…
- •48. Особенности влажнопаровых турбин аэс. Мероприятия по повышению их надежности.
- •19.Профилирование сопловых и рабочих лопаток турбин.Порядок построения решетки. Построение кромок и узкого сечения сопловой решетки
- •Построение профиля сопловой решетки
- •49.Бикбулатов его заменит, не переживай))
- •50)Расчет угла отклонения потока пара в косом срезе (формула Бэра)
- •51. Выбор степени реактивности, отношения скоростей и размеров ступени
- •22. Пром. Перегрев пара и его влияние на абсолютный кпд идеального цикла
- •52.Теплоносители и рабочая среда применительно к тепловым и атомным электростанциям.
- •23. Типы турбинных решеток и их аэродинамические характеристики (таблица
- •53.Тепловые схемы конденсационных аэс.
- •54.Влияние регенеративного подогрева конденсата и питательной воды на тепловую экономичность установки.
- •25. Определение основных размеров ступени турбины (d или h0, f, или )
- •55.Диаграмма режимов турбины с одним регулируемым отбором.
- •26. . Формула Флюгеля-Стадола определение давления пара в местах дополнительного его отбора из турбины
- •56. Переменные режимы работы турбины. Треугольники скоростей при расчетном и уменьшенном теплоперепаде.
- •27. Его тоже поменяют, все в порядке))
- •57.Теплоносители и рабочая среда применительно к тепловым и атомным электростанциям.
- •28. Тепловые схемы конденсационных атомных электростанций
- •58. Турбинная ступень. Степень реактивности. Процесс расширения пара в решетках ступени в h-s диаграмме.
- •29. Профили лопаток ступени, входной и выходной треугольники скоростей. Силы, действующие на рабочую лопатку(окружная, осевая)
- •59. Особенности влажнопаровых турбин аэс. Мероприятия по повышению их надежности.
- •30. Относительный лопаточный кпд ηол. Его расчет для реактивной ступени, график потерь в турбине в зависимости от u/cф.
- •60.Тепловые схемы конденсационных аэс.
7. Многоступенчатая турбина реактивного типа и процесс расширения в ней в h-s диаграмме. Расчет диаметров последней и первой ступеней.
Для экономичной работы одноступенчатой турбины необходимая окружная скорость лопаток на среднем диаметре при оптимальном отношении скоростей U/Сф = 0.65 должна составить 1000—1100 м/с. Обеспечить прочность ротора и лопаток при таких окружных скоростях практически невозможно. Кроме того, число М в потоке пара в этом случае составит 3,0—3,5, что приведет к большим волновым потерям энергии в потоке. Поэтому все крупные паровые турбины для энергетики и других отраслей народною хозяйства выполняют многоступенчатыми. В этих турбинах нар расширяется в последовательно включенных ступенях, причем теплоперепады таких ступеней составляют небольшую часть располагаемого теплоперепада всей турбины. Поэтому окружные скорости лопаток в ступенях многоступенчатой турбины составляют 120—250 м/с для большинства ступеней ЧВД и ЧСД турбины и достигают 350—430 м/с для последних ступеней конденсационных турбин при стальных лопатках и 600 м/с при титановых лопатках. Числа М в потоке для большинства ступеней меньше единицы. в зависимости от располож сопловой решетки турб бывают камерными диафрамен-активные. лопатки статора на корпусе-реактивные
за регулирующей ступенью размещаются ступени, которые всегда выполняются с полным подводом пара.Рабочие лопатки устанавливаются на барабане, а сопловые крепется в корпусе турбины. в связи с большими значениями (U/Cф)опт реактивные ступени при той же окружной скорости u перерабатывают меньшей теплоперепад.
Основные размеры рабочей решетки последней ступени- средний диаметр- d2 и высоту рабочих лoпаток l2, зависящий главным образом от объемного расхода пара,- определяют по уравнению неразрывности, записанному для выходного сечения рабочих лапаток, перпендикулярно оси ротора:
Средний диаметр последней ступени турбины определятся по формуле
,
Где i-число потоков в ЦНД, принимают 2,5-3 для больших турбин и 3,5 -7 для малых размеров.
Определение размеров первой нерегулируемой ступени можно проводить так же, как и для последней ступени , на основе уравнения неразрывности
37.Особенности пуска, остановка и эксплуатация турбин.
Технология пуска турбины в большой степени зависит от температурного состояния оборудования перед ним. В соответствии с этим различают пуски из холодного, неостывшего и горячего состояний. Эта классификация производится по температуре турбины и главных паропроводов перед пуском.
Если котел и паропроводы блока ТЭС полностью остыли, а температура турбины не превышает 150 °С, то считают, что пуск происходит из холодного состояния. Для мощных энергоблоков для остывания до такой температуры требуется не менее 90 ч. Пускам из горячего состояния соответствует температура турбины 420—450 °С и выше. Такая температура достигается за 6—10 ч. Промежуточным значениям температуры турбины перед пуском соответствуют пуски из неостыв-шего состояния.
На практике обычно пусками из горячего состояния называю! пуск после ночного простои, из неос-тывшего состояния — после простоя в субботу и воскресенье, из холодного состояния — после простоев большей длительности. Пуск турбины из любого температурного состояния должен проводиться с учетом явлений, возникающих при нестационарных тепловых режимах, рассмотренных выше.
Всякое удлинение пуска приводит к дополни-тельным затратам топлива. Поэтому пуск должен производиться быстро, однако не в ущерб надежности. Таким образом, основной принцип проведения пуска состоит в том, что он должен проводиться со скоростью, максимально возможной по условиям надежной работы.
Пуск турбины запрещается при неисправности основных приборов, показывающих протекание теплового процесса в турбине и ее механическое состояние. К 1аким приборам относятся тахометр, приборы, измеряющие температуру и давление свежего пара и пара промежуточного перегрева, а также вакуум и температуру в выходном патрубке.
Пуск турбины запрещается при неисправности системы защиты Автомат безопасности турбины должен быть правильно настроен и безупречно работать.
ОСТАНОВКА ТУРБИНЫ И ЕЕ ПУСК ИЗ ГОРЯЧЕГО И НЕОСТЫВШЕГО СОСТОЯНИЙ
Изменение температуры в проточной части турбины приводит к тем же явлениям, какие возникают и при се пуске: появляется несовместность тепловых расширений отдельных деталей, а в них самих возникают тем пе ратурные напряжения. Однако при остановке турбины эти явления проявляются специфически, поэтому они требуют отдельного рассмотрения.
Наиболее опасным явлением при остановке турбины является относительное сокращение ротора основной причиной которого является поступление в камеру регулирующей и последующих ступеней пара пониженной температуры. Ротор, омываемый паром по большой поверхности и с высокой интенсивностью, быстро охлаждается и сокращается. Корпус турбины, имеющий гораздо большую массу и экранированный во многих случаях обоймами, охлаждается хуже, поэтому отстает от ротора в своем сокращении.
Остановка турбины в горячий резерв-при остановке турбины в горячий резерв предполагается ее пуск после относительно короткого времени. Как правило, это остановки на ночь или на субботу и воскресенье.
При остановке турбины в горячий резерв необходимо сохранить ее температуру как можно более высокой, так как это не только сократит и облегчит последующий пуск турбины, но и уменьшит потерн теплоты на нагрев се деталей до номинальной температуры. С этой точки зрения наилучшим способом остановки турбины был бы мгновенный сброс нагрузки. В этом случае не происходило бы охлаждения турбины во время разгружения. Сброс любой нагрузки, особенно полной, является очень серьезным испытанием для турбины, поэтому как способ остановки он вообще неприемлем. Можно говорить об очень быстрой разгрузке турбоагрегата и отключении его от сети. Однако мощность многих турбоагрегатов в настоящее время настолько велика, что может составлять значительную долю мощности энергосистемы, в которой они работают.
БИЛЕТ 8