
- •1. Исторический обзор развития паровых турбин. Турбины Герона, Лаваля, Парсонса, и их конструктивные особенности.
- •31. Схема газотурбинной установки и ее реальный цикл. Внутренний кпд гту. Коэф. Избытка воздуха.
- •2. Принципиальная схема теплоэнергетической установки и ее" цикл в t-s (Ренкина) Абсолютный кпд идеальной установки с учетом и без учета роботы насоса.
- •33.Достоинства и недостатки паротурбинных и газотурбинных установок.
- •4. Влияние параметров пара на абсолютный кпд пту. Понятие эквивалентной температуры при замене цикла Ренкина циклом Карно. Промежуточный перегрев пара.
- •34. Турбина с длинными лопатками. Закрутка лопаток. Закон закрутки с постоянством циркуляции (вывод формулы).
- •5. Принципиальные схемы турбин для комбинированной выработки тепловой и электрической энергии.
- •35.Турбинные решетки осевых турбин,их геометрические параметры(сопловые,рабочие)
- •6. Формулы расчета характеристик решеток
- •36.Многоступенчатая турбина активного типа и процесс расширения в ней в h-s диаграмме . Коэффициент возврата теплоты.
- •7. Многоступенчатая турбина реактивного типа и процесс расширения в ней в h-s диаграмме. Расчет диаметров последней и первой ступеней.
- •37.Особенности пуска, остановка и эксплуатация турбин.
- •8.Схема установки с турбиной конденсационной и с турбиной с противодавлением
- •38.Геометрические характеристики решеток сопловых и рабочих(….)Графики зависимости эффективного угла выхода от относительного шага и угла установки профиля.
- •9. Формулы расчета площади выхода потока из решетки и площади минимального сечения для сверхзвуковых сопловых решеток.
- •39.Турбины с отопительным отбором пара нерегулируемого давления.
- •10. Турбинная ступень. Степень реактивности. Процесс расширения пара в решетках ступени в h, s - диаграмме (h0, h0c, h0p, w12/2).
- •40.Треугольники скоростей (совмещенные) турбинной ступени.
- •11. Профили лопаток ступени, входной и выходной треугольники скоростей. Силы, действующие на рабочую лопатку(окружная, осевая)
- •41. Характеристики плоских решеток.
- •42. Переменные режимы работы турбины. Треугольники скоростей при расчетном и уменьшенном теплоперепаде.
- •13. Формула Флюгеля-Стадола определение давления пара в местах дополнительного его отбора из турбины
- •43. Способы регулирования расхода пара через турбину
- •14. Принципиальная схема регулятора расхода пара через турбину для обеспечения постоянства ее оборотов. Устройство автомата для машины от чрезмерного повышения
- •44. Относительный лопаточный кпд ηол. Его расчет для активной ступени, график потерь в турбине от u/cф.
- •15. Относительный лопаточный кпд ηол. Его расчет для реактивной ступени, график потерь в турбине в зависимости от u/cф.
- •45. Определение основных размеров ступени турбины.
- •16. Течение влажного пара в турбинных решетках. Возможные траектории влаги. Треугольники скоростей пара и капель. Оценочная формула потерь от влажности.Потери от влажности пара.
- •46.Критерии для анализа переменного режима работы турбины. График зависимости расхода g пара через турбинную решетку от давления р1 за ней при заданном р0 перед ней.
- •17. Основные элементы конденсационного устройства паротурбинной установки. Цель отсасывания воздушно- паровой смеси из конденсатора.
- •47. Тепловые схемы аэс. Процесс расширения в турбине насыщенного пара (сепарация, пароперегрев).
- •18.Тепловой расчет конденсатора…
- •48. Особенности влажнопаровых турбин аэс. Мероприятия по повышению их надежности.
- •19.Профилирование сопловых и рабочих лопаток турбин.Порядок построения решетки. Построение кромок и узкого сечения сопловой решетки
- •Построение профиля сопловой решетки
- •49.Бикбулатов его заменит, не переживай))
- •50)Расчет угла отклонения потока пара в косом срезе (формула Бэра)
- •51. Выбор степени реактивности, отношения скоростей и размеров ступени
- •22. Пром. Перегрев пара и его влияние на абсолютный кпд идеального цикла
- •52.Теплоносители и рабочая среда применительно к тепловым и атомным электростанциям.
- •23. Типы турбинных решеток и их аэродинамические характеристики (таблица
- •53.Тепловые схемы конденсационных аэс.
- •54.Влияние регенеративного подогрева конденсата и питательной воды на тепловую экономичность установки.
- •25. Определение основных размеров ступени турбины (d или h0, f, или )
- •55.Диаграмма режимов турбины с одним регулируемым отбором.
- •26. . Формула Флюгеля-Стадола определение давления пара в местах дополнительного его отбора из турбины
- •56. Переменные режимы работы турбины. Треугольники скоростей при расчетном и уменьшенном теплоперепаде.
- •27. Его тоже поменяют, все в порядке))
- •57.Теплоносители и рабочая среда применительно к тепловым и атомным электростанциям.
- •28. Тепловые схемы конденсационных атомных электростанций
- •58. Турбинная ступень. Степень реактивности. Процесс расширения пара в решетках ступени в h-s диаграмме.
- •29. Профили лопаток ступени, входной и выходной треугольники скоростей. Силы, действующие на рабочую лопатку(окружная, осевая)
- •59. Особенности влажнопаровых турбин аэс. Мероприятия по повышению их надежности.
- •30. Относительный лопаточный кпд ηол. Его расчет для реактивной ступени, график потерь в турбине в зависимости от u/cф.
- •60.Тепловые схемы конденсационных аэс.
14. Принципиальная схема регулятора расхода пара через турбину для обеспечения постоянства ее оборотов. Устройство автомата для машины от чрезмерного повышения
С ростом частоты
вращения п
центробежные
силы грузов 5
увеличиваются,
муфта (точка А)
регулятора
1 поднимается,
сжимая пружину 6
и поворачивая
рычаг АВ
вокруг точки
В. Соединенный
с рычагом в точке С отсечной золотник
2 смещается
из среднего положения вверх, за счет
чего верхняя полость гидравлического
сервомотора 3
сообщается
с напорной линией, а нижняя — со сливной.
Поршень сервомотора перемещается
вниз, прикрывая регулирующий клапан 4
и уменьшая
пропуск пара в турбину. Одновременно
с помощью обратной связи (правый конец
рычага АВ
связан со
штоком поршня сервомотора) золотник
возвращается в среднее положение, в
результате чего стабилизируется
переходный процесс и обеспечивается
устойчивость регулирования. При
снижении частоты вращения процесс
регулирования протекает аналогично,
но с увеличением пропуска пара в
турбину.
Совокупность установившихся режимов работы турбины изображается с помощью развернутой статической характеристики регулирования.
По характеристикам
квадрантов //—IV
диаграммы
простым построением, показанном на рис.
9.3 штриховыми линиями, в квадранте /
находим зависимость п
=f(Nэ),
связывающую регулируемый параметр
— частоту вращения — с мощностью. Это
и есть собственно статическая
характеристика регулирования частоты
вращения, имеющая
важнейшее значение для работы турбины
как в изолированной электрической
сети, так и параллельно с другими
агрегатами в общей энергосистеме.
Как следует из статической характеристики регулирования, при изменении мощности частота вращения не остается постоянной. Она несколько снижается с ростом мощности. При изменении нагрузки от номинальной до нуля (холостой ход) установившаяся или статическая ошибка регулирования составляет
.
Наклон статической характеристики регулирования определяется отношением статической ошибки к номинальной частоте вращения л0 , т.е. величиной называемой степенью неравномерности регулирования частоты вращения турбины. При меньших значениях степени неравномерности трудно обеспечить достаточную устойчивость регулирования, а при больших се значениях ухудшается точность регулирования и возрастает динамическое повышение частоты вращения при сбросах нагрузки.
При построении развернутой статической характеристики принималось, что все се зависимости являются однозначными. В реальных системах это не выполняется.
Статические
характеристики некоторых элементов
и системы в целом, полученные при
нафужении и разгружснии турбины, не
совпадают (рис. 9.5), что свидетельствует
о нечувствительности
регулирования, характеризуемой
степенью
нечувствительности по
частоте вращения
Основной вклад в появление нечувствительности вносят силы трения в регуляторах старых конструкций, передаточных механизмах, золотниках, сервомоторах, регулирующих клапанах, люфты в шарнирных соединениях, перекрыши на окнах отсечных золотников.
С ростом нечувствительности процесс регулирования ухудшается, снижается его точность, возможно возникновение автоколебаний. Поскольку степень нечувствительности в значительной мере характеризует совершенство системы регулирования, она регламентируется ГОСТ 13109-87. Для турбин ТЭС мощностью свыше 150 МВт с гидравлическими системами регулирования степень нечувствительности не должна превышать 0,1%. В электрогидравлической системе регулирования с регулятором мощности должно быть обеспечено еn < 0,06 %.
Современная тенденция ужесточения требований по нечувствительности ставит перед конструкторами систем регулирования турбин непростую задачу. Одним из путей се решения является практически полный отказ от механических связей в системе регулирования и замена их гидравлическими или электрическими.