
- •1. Исторический обзор развития паровых турбин. Турбины Герона, Лаваля, Парсонса, и их конструктивные особенности.
- •31. Схема газотурбинной установки и ее реальный цикл. Внутренний кпд гту. Коэф. Избытка воздуха.
- •2. Принципиальная схема теплоэнергетической установки и ее" цикл в t-s (Ренкина) Абсолютный кпд идеальной установки с учетом и без учета роботы насоса.
- •33.Достоинства и недостатки паротурбинных и газотурбинных установок.
- •4. Влияние параметров пара на абсолютный кпд пту. Понятие эквивалентной температуры при замене цикла Ренкина циклом Карно. Промежуточный перегрев пара.
- •34. Турбина с длинными лопатками. Закрутка лопаток. Закон закрутки с постоянством циркуляции (вывод формулы).
- •5. Принципиальные схемы турбин для комбинированной выработки тепловой и электрической энергии.
- •35.Турбинные решетки осевых турбин,их геометрические параметры(сопловые,рабочие)
- •6. Формулы расчета характеристик решеток
- •36.Многоступенчатая турбина активного типа и процесс расширения в ней в h-s диаграмме . Коэффициент возврата теплоты.
- •7. Многоступенчатая турбина реактивного типа и процесс расширения в ней в h-s диаграмме. Расчет диаметров последней и первой ступеней.
- •37.Особенности пуска, остановка и эксплуатация турбин.
- •8.Схема установки с турбиной конденсационной и с турбиной с противодавлением
- •38.Геометрические характеристики решеток сопловых и рабочих(….)Графики зависимости эффективного угла выхода от относительного шага и угла установки профиля.
- •9. Формулы расчета площади выхода потока из решетки и площади минимального сечения для сверхзвуковых сопловых решеток.
- •39.Турбины с отопительным отбором пара нерегулируемого давления.
- •10. Турбинная ступень. Степень реактивности. Процесс расширения пара в решетках ступени в h, s - диаграмме (h0, h0c, h0p, w12/2).
- •40.Треугольники скоростей (совмещенные) турбинной ступени.
- •11. Профили лопаток ступени, входной и выходной треугольники скоростей. Силы, действующие на рабочую лопатку(окружная, осевая)
- •41. Характеристики плоских решеток.
- •42. Переменные режимы работы турбины. Треугольники скоростей при расчетном и уменьшенном теплоперепаде.
- •13. Формула Флюгеля-Стадола определение давления пара в местах дополнительного его отбора из турбины
- •43. Способы регулирования расхода пара через турбину
- •14. Принципиальная схема регулятора расхода пара через турбину для обеспечения постоянства ее оборотов. Устройство автомата для машины от чрезмерного повышения
- •44. Относительный лопаточный кпд ηол. Его расчет для активной ступени, график потерь в турбине от u/cф.
- •15. Относительный лопаточный кпд ηол. Его расчет для реактивной ступени, график потерь в турбине в зависимости от u/cф.
- •45. Определение основных размеров ступени турбины.
- •16. Течение влажного пара в турбинных решетках. Возможные траектории влаги. Треугольники скоростей пара и капель. Оценочная формула потерь от влажности.Потери от влажности пара.
- •46.Критерии для анализа переменного режима работы турбины. График зависимости расхода g пара через турбинную решетку от давления р1 за ней при заданном р0 перед ней.
- •17. Основные элементы конденсационного устройства паротурбинной установки. Цель отсасывания воздушно- паровой смеси из конденсатора.
- •47. Тепловые схемы аэс. Процесс расширения в турбине насыщенного пара (сепарация, пароперегрев).
- •18.Тепловой расчет конденсатора…
- •48. Особенности влажнопаровых турбин аэс. Мероприятия по повышению их надежности.
- •19.Профилирование сопловых и рабочих лопаток турбин.Порядок построения решетки. Построение кромок и узкого сечения сопловой решетки
- •Построение профиля сопловой решетки
- •49.Бикбулатов его заменит, не переживай))
- •50)Расчет угла отклонения потока пара в косом срезе (формула Бэра)
- •51. Выбор степени реактивности, отношения скоростей и размеров ступени
- •22. Пром. Перегрев пара и его влияние на абсолютный кпд идеального цикла
- •52.Теплоносители и рабочая среда применительно к тепловым и атомным электростанциям.
- •23. Типы турбинных решеток и их аэродинамические характеристики (таблица
- •53.Тепловые схемы конденсационных аэс.
- •54.Влияние регенеративного подогрева конденсата и питательной воды на тепловую экономичность установки.
- •25. Определение основных размеров ступени турбины (d или h0, f, или )
- •55.Диаграмма режимов турбины с одним регулируемым отбором.
- •26. . Формула Флюгеля-Стадола определение давления пара в местах дополнительного его отбора из турбины
- •56. Переменные режимы работы турбины. Треугольники скоростей при расчетном и уменьшенном теплоперепаде.
- •27. Его тоже поменяют, все в порядке))
- •57.Теплоносители и рабочая среда применительно к тепловым и атомным электростанциям.
- •28. Тепловые схемы конденсационных атомных электростанций
- •58. Турбинная ступень. Степень реактивности. Процесс расширения пара в решетках ступени в h-s диаграмме.
- •29. Профили лопаток ступени, входной и выходной треугольники скоростей. Силы, действующие на рабочую лопатку(окружная, осевая)
- •59. Особенности влажнопаровых турбин аэс. Мероприятия по повышению их надежности.
- •30. Относительный лопаточный кпд ηол. Его расчет для реактивной ступени, график потерь в турбине в зависимости от u/cф.
- •60.Тепловые схемы конденсационных аэс.
51. Выбор степени реактивности, отношения скоростей и размеров ступени
Соотношения между скоростями и углами потока в турбинной ступени в большой степени зависят от степени реактивности ступени р. Под степенью реактивности ступени понимается отношение располагаемою теплоперспада рабочих лопаток к сумме располагаемых тепло перепадов сопловых и рабочих лопаток, приближенно равной располагаемому тепло перепаду ступени от параметров торможения.
Чем выше степень реактивности р, тем больше ускоряется поток в рабочих лопатках и, следовательно, относительная скорость на выходе w2l увеличивается по сравнению со скоростью wi. Ступень со степенью реактивности, равной нулю, называется активной. В активной ступени в рабочих лопатках не происходит расширения рабочего тела, давление перед рабочими лопатками равно давлению за ними: Р1 = Р. Турбинные ступени со степенью реактивности до 0,25 относят также к активному типу. Турбинные ступени, в которых степень реактивности равна 0,4—0,6 и более, называют реактивными. В многоступенчатых реактивных турбинах обычно применяют реактивные ступени со степенью реактивности р = 0,5.
Отношение скоростей u/сф, может изменяться к зависимости от окружной скорости при переменной частоте вращения ротора турбины. Следует также заметить, что минимальное значение потерь энергии с выходной скоростью достигается при отношении скоростей, близком к оптимальному. При оптимальном u/сф угол вектора скорости с2 на несколько градусов больше угла а2 = 90о(а2>90°).
Отношение хф = u/сф, для активных ступеней лежит в пределах от 0,40 до 0,52. Малые значения хф выбирают для ступеней с парциальным подводом пара.
БИЛЕТ 22
22. Пром. Перегрев пара и его влияние на абсолютный кпд идеального цикла
В
теплоэнергетической установке с
промежуточным перегревом (рис. 1.18) пар
после расширения в ЦВД турбины направляется
в котел для вторичного перегрева, где
температура его повышается от t1
до tПП.
После промежуточного перегрева пар
попадается в ЦНД, где расширяется до
давления в конденсаторе pК.
Цикл с промежуточным перегревом пара
и сверхкритическим начальным давлением
в Ts-диаграмме
(рис. 1.19) можно рассматривать как сочетание
двух циклов, первый из которых la'abde21
является основным, а второй 2ee1fg32
— дополнительным.
Еcли эквивалентная температура дополнительного цикла (ТЭ)ПП выше эквивалентной температуры основного цикла TЭ, то экономичность дополнительное цикла будет выше экономичности основного цикла и КПД общего цикла возрастет. При этом благодаря уменьшению влажности пара в последних ступенях турбины возрастут относительные внутренние КПД этих ступеней, а следовательно, увеличится и КПД всей турбины. Кроме того, применение промежуточного перегрева позволяет существенно повысить начальное давление пара при неизменной начальной температуре и обеспечить умеренную конечную влажность.
Абсолютный
КПД идеального цикла
Если изоэнтропийный процесс расширения заканчивается в области влажного пара, то КПД выразится как
Внутренний абсолютный КПД можно представить в виде