
- •11. Теплове подобие.
- •16.Способы нагревания и охлаждения.
- •16.Охлаждающие агенты и методы их использования.
- •17.Кожухотрубчатые теплообменники.
- •18. Теплообменники труба в трубе.
- •22.Пластинчатые теплообменники
- •23.Теплообменники с ребристой поверхностью
- •24.Смесительные теплообменники
- •27.Выпаривание
- •28.Однократное выпаривание. Материальный баланс
- •29.Однократное выпаривание. Тепловой баланс.
- •30.Выпаривание. Температурные потери(депрессии)
- •34 Многокорпусная выпарная установка.
- •42. Пленочные выпарные аппараты
- •43.Роторные прямоточные аппараты.
- •32. Противоточная выпарная установка
- •50. Высота и число единиц переноса.
- •62.Фазовое равновесие при абсорбции. Закон Генри.
- •6 4.Удельный расход абсорбента
- •65.Кинетика абсорбции.
- •68.Насадочные абсорберы
- •70. Порядок расчета абсорбера
- •98.Барабанная сушилка
- •97.Камерная сушилка
- •99.Сушилки кипящего слоя
18. Теплообменники труба в трубе.
Теплообменники
этой конструкции, называемые также
теплообменниками типа «труба в трубе»,
состоят из нескольких последовательно
соединенных трубчатых элементов,
образованных двумя концентрически
расположенными трубами (рис. VI11-16). Один
теплоноситель движется по внутренним
трубам /, а другой — по кольцевому зазору
между внутренними / й наружными 2
трубами.
Внутренние трубы (обычно диаметром
57—108 мм)
соединяются
калачами 3,
а
наружные трубы, имеющие диаметр 76—159
мм,
—
патрубками 4.
Благодаря небольшим поперечным сечениям трубного и межтрубного пространства в двухтрубчатых теплообменниках даже при небольших расходах достигаются довольно высокие скорости жидкости, равные обычно 1—1,5 м/сек. Это позволяет получать более высокие коэффициенты теплопередачи и достигать более высоких тепловых нагрузок на единицу массы аппарата, чем в кожухотрубчатых теплообменниках. Кроме того, с увеличением скоростей теплоносителей уменьшается возможность отложения загрязнений на поверхности теплообмена.
Вместе с тем эти теплообменники более громоздки, чем кожухотрубча-тые, и требуют большего расхода металла на единицу поверхности теплообмена, которая в аппаратах такого типа образуется только внутренними трубами.
Двухтрубчатые теплообменники могут эффективно работать при небольших расходах теплоносителей, а также при высоких давлениях. Если требуется большая поверхность теплообмена, то эти аппараты выполняют из нескольких.
22.Пластинчатые теплообменники
В пластинчатом теплообменнике (рис. V111-19) поверхность теплообмена образуется гофрированными параллельными пластинами /, 2, с помощью которых создается система узких каналов шириной 3—6 мм с волнистыми стенками. Жидкости, между которыми происходит теплообмен, движутся в каналах между смежными пластинами, омывая противоположные боковые стороны каждой пластины.
Пластина (рис. VII1-20) имеет на передней поверхности три прокладки. Большая прокладка J ограничивает канал для движения жидкости между пластинами, а также отверстия 2 и 3 для входа жидкости / в канал и выхода из него; две малые кольцевые прокладки 4 уплотняют отверстия 5 и 6, через которые поступает и удаляется жидкость//, движущаяся противотоком.
На рис. VIII-19 движение жидкости показано схематично пунктирной линией, а жидкости сплошной линией. Жидкость поступает через штуцер 3, движется по нечетным каналам (считая справа налево) и удаляется через штуцер. 4. Жидкость // подается через штуцер 5, движется по четным каналам и удаляется через штуцер 6.
Пакет пластин зажимается между неподвижной плитой 7 и подвижной плитой 8 посредством винтового зажима 9.
Вследствие
значительных скоростей, с которыми
движутся жидкости между -пластинами,
достигаются высокие коэффициенты
теплопередачи, вплоть до 3800 вт/м2
[3000
ккал/(м2-чград)\
при
малом гидравлическом сопротивлении.
Рис. VI11-19. Схема пластинчатого теплообменника:
/ — четные пластины: 2 — нечетные пластины:
3, 4 — штуцера для входа и выхода теплоносителя /;
5, 6 — то же. для теплоносителя ;
7 — неподвижная головная плита; 8 — подвижная головная плита;
/,
4 —
прокладки; 2,
3 —
отверстия для жидкости /; 5,
6 —
отверстия для жидкости //.