
- •1.Множества. Основные понятия. Операции над множествами
- •2.Числовые множества
- •3.Числовые промежутки. Понятие окрестности точки.
- •4.Понятие функции. Способы задания функции. Основные характеристики функции
- •5.Обратная функция. Сложная функция
- •6. Числовая последовательность. Предел числовой последовательности
- •7.Теоремы о предельных переходах в неравенствах.
- •8.Предел монотонной неограниченной последовательности. Теорема Вейерштрасса.
- •9. Предел функции в точке. Односторонние пределы.
- •16.2. Односторонние пределы
- •10. Бесконечно малые функции: определение и основные теоремы
- •17.2. Связь между функцией, ее пределом и бесконечно малой функцией
- •11.Связь между функцией, ее пределом и бесконечно малой функцией.
- •12.Основные теоремы о пределах
- •13. Признаки существования пределов. Теоремы о пределе промежуточной функции и о пределе монотонной функции.
- •14. Первый замечательный предел
- •15. Второй замечательный предел
- •16. Непрерывность функции в точке, в интервале, на отрезке.
- •17. Точки разрыва функции и их классификация.
- •18.Основные теоремы о непрерывных функциях. Непрерывность элементарных функций
- •Непрерывность элементарных функций
- •19.Свойства функций, непрерывных на отрезке.
- •20.Определение производной, ее геометрический и экономический смысл.
- •21. Связь между непрерывностью и дифференцируемостью функций.
- •22. Производные суммы, разности, произведения и частного
- •23.Производные сложной функции
- •24.Производные основных элементарных функций
- •25. Возрастание и убывание функций
- •26. Максимум и минимум функций. Необходимое и достаточное условие экстремума
- •27. Выпуклость графика функции. Точки перегиба
- •28.Общая схема исследования функции и построения графика
- •29. Понятие неопределенного интеграла
- •30.Свойства неопределенного интеграла
- •31. Таблица основных неопределенных интегралов
- •32. Метод непосредственного интегрирования
- •33. Метод интегрирования подстановкой (заменой переменной)
- •34. Метод интегрирования по частям
- •35. Понятия о рациональных функциях
- •36. Интегрирование простейших рациональных дробей
- •37. Интегрирование тригонометрических функций. Универсальная тригонометрическая подстановка
- •38. Определенный интеграл как предел интегральной суммы
- •39. Геометрический смысл определенного интеграла
- •40. Формула Ньютона-Лейбница
- •41. Основные свойства определенного интеграла
- •42. Вычисления определенного интеграла Формула Ньютона-Лейбница.
- •Замена переменной в определенном интеграле.
- •Интегрирование по частям при вычислении определенного интеграла.
- •43. Несобственные интегралы. Интеграл с бесконечным промежутком интегрирования(несобственный интеграл I рода). Интеграл от разрывной функции (несобственный интеграл II рода)
- •44. Функции нескольких переменных, область определения.
- •45. Производные и дифференциалы функций нескольких переменных.
- •46. Экстремум функций многих переменных.
- •47. Условный экстремум. Метод множителей Лагранжа.
17.2. Связь между функцией, ее пределом и бесконечно малой функцией
Теорема 17.5. Если функция ƒ(х) имеем предел, равный А, то ее можно представить как сумму числа А и бесконечно малой функции α(х), т. е. если limƒ(х)=А, при Х→Хо то ƒ(х)=А+а(х).
▼ Пусть
Следовательно,
т.
е. |ƒ(х)-А-0|<ε. Это означает, что функция
ƒ(х)-А имеет предел, равный нулю, т. е.
является б.м.ф., которую обозначим через
α(х): ƒ(х)-А=α(х). Отсюда ƒ(х)=А+α(х).▲
Теорема 17.6 (обратная). Если функцию ƒ(х) можно представить в виде суммы числа А и бесконечно малой функции α(х), то число А является пределом функции ƒ(х), т. е. если ƒ(х)=А+α(х), то lim ƒ(х)=А при Х→Хо
11.Связь между функцией, ее пределом и бесконечно малой функцией.
Теорема 17.5. Если функция ƒ(х) имеем предел, равный А, то ее можно представить как сумму числа А и бесконечно малой функции α(х), т. е. если limƒ(х)=А, при Х→Хо то ƒ(х)=А+а(х).
▼ Пусть
Следовательно, т. е. |ƒ(х)-А-0|<ε. Это означает, что функция ƒ(х)-А имеет предел, равный нулю, т. е. является б.м.ф., которую обозначим через α(х): ƒ(х)-А=α(х). Отсюда ƒ(х)=А+α(х).▲
Теорема 17.6 (обратная). Если функцию ƒ(х) можно представить в виде суммы числа А и бесконечно малой функции α(х), то число А является пределом функции ƒ(х), т. е. если ƒ(х)=А+α(х), то lim ƒ(х)=А при Х→Хо
<< Пример 17.2
Доказать, что
Решение: Функцию 5+х можно представить в виде суммы числа 7 и б.м.ф. х-2 (при х→2), т. е. выполнено равенство 5+х=7+(х-2). Следовательно, по теореме 17.6 получаем
12.Основные теоремы о пределах
Рассмотрим теоремы, которые облегчают нахождение пределов функции. Формулировка и доказательство теорем для случаев, когда х→x0 и х→∞, аналогичны. В приводимых теоремах будем считать, что пределы limƒ(х), limφ(х) существуют при Х→Хо
Теорема 17.7. Предел суммы (разности) двух функций равен сумме (разности) их пределов:
В случае разности функций доказательство аналогично. Теорема справедлива для алгебраической суммы любого конечного числа функций.
Следствие 17.3. Функция может иметь только один предел при х→хо.
Пусть
По
теореме 17.7 имеем:
Отсюда А-В=0, т. е. А=В.
Теорема 17.8. Предел произведения двух функций равен произведению их пределов:
Доказательство
аналогично предыдущему, проведем его
без особых пояснений. Так как
где
α(х) и ß(х) — б.м.ф. Следовательно,
Выражение
в скобках есть б.м.ф. Поэтому
Отметим, что теорема справедлива для произведения любого конечного числа функций.
Следствие
17.4 .
Постоянный множитель можно выносить
за знак предела:
▼
▲
Следствие
17.5 .
Предел степени с натуральным показателем
равен той же степени предела:
Теорема 17.9. Предел дроби равен пределу числителя, деленному на предел знаменателя, если предел знаменателя не равен нулю:
Доказательство аналогично предыдущему. Из равенств
Второе слагаемое есть б.м.ф. как частное от деления б.м.ф. на функцию, имеющую отличный от нуля предел.
Пример 17.3
Вычислить
Решение: