Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
шпоры биотехнология.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
619.87 Кб
Скачать

93. Иммобилизованные ферменты и преимущества применения в биотехнологии.

Иммобилизация представляет собой включение фермента в такую среду, в которой для него доступной оказывается лишь ограниченная часть общего объема. На практике для иммобилизации ферментов используют рутинные физические и химические методы. Все существующие методы физической иммобилизации (т. е. иммобилизации, при которой фермент не соединяется с носителем ковалентными связями) могут быть подразделены на четыре основные группы:

  • адсорбция на поверхности нерастворимого носителя (или как иногда говорят матрикса);

  • включение в поры геля;

  • пространственное разделение фермента от остальной части реакционной смеси с помощью полупроницаемой мембраны;

  • введение фермента а двухфазную реакционную среду, в которой он растворим, но может находиться только в одной из фаз.

Эффективность ферментативных процессов, используемых в самых раз-личных областях человеческой деятельности, удалось увеличить с помощью иммобилизации ферментов. Иммобилизованные ферменты обладают не-сколькими преимуществами над своими растворимыми аналогами:

1) могут быть отделены от продукта и использованы повторно, что снижает стоимость процесса;

2) характеризуются повышенной стабильностью и длительным со-хранением активности;

3) пригодны для непрерывных процессов, которые, в свою очередь, облегчают контроль за качеством и снижают стоимость труда;

4) время реакции может быть уменьшено за счет создания более вы-сокого соотношения ферментов и субстратов;

5) возможностью создания мультиферментных систем.

Однако применение ферментов ограничено из-за их низкой стабиль-ности, способности катализировать только одну единственную реакцию, высокой стоимости чистых препаратов. Кроме того, для практических целей могут использоваться только те ферменты, для которых не требуется регенерации кофакторов. Поэтому в настоящее время наряду с им-мобилизацией ферментов внимание исследователей все больше привле-кает иммобилизация клеток и органелл. Живая клетка в отличие от фер-мента представляет собой готовый биотехнологический реактор, в кото-ром реализуются не только процессы, приводящие к образованию конеч-ного продукта, но и многие другие, способствующие поддержанию ката-литической эффективности системы на высоком уровне (например, реге-нерация кофакторов). Поскольку ферменты функционируют в нативном окружении, их денатурация в процессе работы сводится к минимуму.

Это расширяет число применяемых ферментов и позволяет осуществлять как процессы синтеза, так и процессы деградации. Иммобилизованные клетки идеально подходят для использования в реакторах с перемешиванием, через которые пропускают субстрат. Пре-имуществом таких реакторов является возможность их многократного использования и получения продукта, свободного от фермента. Конечно, использование иммобилизованных клеток не лишено недостатков. На-пример, клеточная стенка или плазматическая мембрана могут препятст-вовать проникновению субстрата к ферменту или диффузии продукта из клетки. Кроме того, возникает необходимость поддержания целостности клеток и удержания их в той фазе роста, в которой синтезируются тре-буемые ферменты. Наконец, из-за большого числа присутствующих в клетке ферментов (что в ряде случаев рассматривается как достоинство)возможно протекание нежелательных побочных реакций.

Для иммобилизации клеток используется множество способов (сорб-ция инертными и ионообменными носителями, ковалентное связывание с полимерным носителем, включение в гель) и носителей разных типов (природные и синтетические полимеры и неорганические вещества). Вклю-чение живых клеток требует мягких условий иммобилизации, носитель при этом должен представлять собой систему открытых пор с хорошими условиями для газообмена. Следует принимать во внимание и возможное вредное влияние на жизнеспособность клеток сшивающих агентов. Наи-большее распространение получило включение клеток в полиакрила-мидный гель и гель альгината кальция. Альгинат – основной структурный полисахарид бурых морских водо-рослей. В присутствии моновалентных катионов полисахарид образует

вязкий раствор, тогда как в присутствии двухвалентных катионов, осо-бенно кальция, наблюдается образование геля. Поскольку гель образует-ся в мягких условиях, в нем можно иммобилизовать живые клетки.

Во-первых, чистые препараты ферментов неустойчивы при длительном хранении, а также при разного рода воздействиях, особенно тепловых.

Во-вторых, в виду сложности отделения ферментов от различных реагентов смеси многократное их использование весьма затруднено. Однако принципиально новые перспективы открылись перед прикладной энзимологией с разработкой принципов создания иммобилизованных ферментов. Иммобилизованные ферментные препараты обладают рядом существенных преимуществ при использовании в прикладных (промышленных целях) производствах по сравнению с чистыми препаратами. Гетерогенный (иммобилизованный) катализатор легко отделить от реакционной среды, что обусловливает:

  • возможность остановки реакции в любой нужный момент;

  • повторное использование катализатора;

  • получение конечного продукта, не загрязненного ферментом.

Последний момент весьма важен при производстве пищевых и медицинских продуктов. Применение иммобилизованного катализатора позволяет проводить ферментный процесс непрерывно и регулировать скорость реакции, а также изменять количество получаемого продукта в соответствии с изменениями скорости протока реакционной смеси. Иммобилизация или некоторая модификация фермента может обусловить изменения и некоторых его свойств (специфичность взаимодействия с субстратом; зависимость каталитической активности от рН, ионного состава и других параметров среды, а также его стабильность по отношению к различного рода денатурирующим воздействиям). Иммобилизация ферментов дает возможность регулировать их каталитическую активность за счет изменения свойств носителя.