
- •1.Биотехнология как межотраслевая область научно-практических знаний.
- •2. Связи биотехнологии с рядом современных отраслей промышленных производств.
- •3.Основные факторы, обусловившие стимул в развитии современной биотехнологии.
- •4. Связь биотехнологии с биологическими, химическими, техническими и другими науками.
- •5. Практические задачи биотехнологии
- •6. Исторические этапы развития биотехнологии
- •7. Переход от эмпирического к научному подходу в решении б.Т. Задач
- •8. Экономические аспекты биотехнологии:
- •9. Ключевая роль биотехнологии в социально-экономическом развитии отдельных государств и в целом.
- •10. Области применения достижений биотехнологии
- •11.Продукты биотехнологических производств
- •12. Обобщенная схема биотехнологического производства.
- •13. Экономические аспекты ключевых этапов биотехнологического процесса
- •14. Пути повышения рентабельности биотенологических производств.
- •15. Мелкомасштабная и крупномасштабная биотехн.
- •17.Характеристика параметров экологических процессов:
- •18. Способы очистки сточных вод.
- •20. Характеристика параметров “метаболитических процессов”
- •22.Первичные, вторичные метаболиты, крупные и небольшие молекулы как продукты бт производств.
- •23 Микроорганизмы - основные объекты биотехнологии
- •24.Преимущества микроорганизмов перед другими объектами в решении современных биотехнологических задач:
- •25.Характеристика объектов биотехнологии.
- •26. Особенности использования эукариотических клеток в биотехнологическом производстве
- •27.Принципы подбора биотехнологических объектов.
- •28. Промышленные, модельные и базовые микроорганизмы.
- •29. Требования к продуцентам, используемых в биотехнологическом производстве.
- •30. Способы улучшения продуцентов
- •31. Уровни регуляции клеточного метаболизма и пути воздействия на него.
- •32.Физиологические и генетические способы регуляции метаболизма микроорганизмов-продуцентов. (см. Вопр 31)
- •I(констут.Ген) r-ген Промотор Оператор z y a(структурные гены) терминатор
- •33.Регуляция на уровне репликации днк и пути использования её для улучшения свойств продуцентов.
- •34. Регуляция на уровне транскрипции. Конечный продукт как регулятор биосинтеза lac-оперон:
- •35. Роль внешних факторов в регуляции метаболизма продуцентов.
- •36. Понятие о продуцентах и сверхпродуцентах.
- •37. Использование генетических методов в биотехнологии.
- •38. Генетические способы улучшения продуцентов: организменный, клеточный и молекулярный уровни.
- •39. Получение продуцентов путем ступенчатого отбора случайных мутаций и отбор мутантов с заданным фенотипом
- •40.Мутации изменяющие экспрессию генов на примере лактозного и триптофанового оперонов lac-оперон:
- •41. Роль сырья в экономике биотехнологических процессов.
- •42. Требования, предъявляемые к питательным субстратам, используемым в биотехнологических процессах
- •43. Сырье и питательные среды.
- •44. Основные типы питательных сред и принципы их выбора.
- •46. Природные сырьевые материалы растительного происхождения.
- •47.Продукты отхода различных произв-в, как сырье б.Т. Проц-в. Хим-е и нефтехим-е субстраты
- •48.Способы переработки сырья???
- •49.Преимущества и недостатки биотехнологических производств по сравнению с химическими технологиями.
- •50. Принципиальные схемы биотехнологических процессов, определяющие конструктивные особенности биореакторов(ферменторов)
- •51.Основные требования, предъявляемые к системам, используемым для процессов ферментации
- •52. Общая схема ферментационных процессов.
- •53. Типы и режимы ферментаций: периодические и непрерывные п-сы.
- •54. Продукты первой и второй стадии ферментации
- •55 Взаимосвязь тропо- и идиофазы при получении первичных и вторичных метаболитов
- •56.Особенности роста и культивирования микроорганизмов в очистных сооружениях:
- •57.Особенности роста и культивирования микроорганизмов при производстве белка одноклеточных микроорганизмов.
- •58.Особенности роста и культивирования микроорганизмов при производстве первичных и вторичных метаболитов
- •59.Проблемы аэрирования, при различных ферментациях.
- •60. Открытые и замкнутые ферментационные системы.
- •61. Проблемы пеногашения при различных ферментациях.
- •62. Проблемы асептики, при различных ферментациях
- •63 Проблемы стерильности при различных ферментациях
- •64.Регулирование режима культивирование продуцентов по принципу хемостата:
- •65.Параметры роста при периодическом культивировании.
- •66. Продукты первой и второй фазы роста
- •67.Типы периодического культивирования.
- •68. Непрерывно-проточное культивирование.
- •69. Принцип подбора и конструирования биореактора.
- •70. Основные требования, предъявляемые к биореакторам
- •71.Системы перемещивания, примен-е в совр-х ферменторах
- •72)Принципы масштабирования технологических процессов:
- •73. Зависимость конструктивных особенностей биореакторов от свойств примянемого субстрата.
- •74. Специализированные ферментационные технологии: аэробные, твердофазные и газофазные процессы
- •75.Особенности культивирования клеток растений.
- •76. Особенности культивирования клеток животных.
- •77. Технология культивирования клеток животных. Параметры роста.
- •78. Принципы подбора питательных сред для культивирования микроорганизмов, клеток животных и растений.
- •79. Конечные стадии получения продуктов биотехнологических процессов
- •80.Основные методы и принципы выделения продуктов биосинтеза
- •81.Методы отделения биомассы.
- •82. Пенообразование и пеногашение
- •83.Методы дезинтеграции клеток.
- •84. Выделение целевого продукта: осаждение, экстрагирование, адсорбция.
- •85. Электрохимические методы выделения целевого продукта, ионообменная хроматография, иммуноэлектрофорез.
- •86. Концентрирование, обезвоживание, модификация и стабилизация целевых продуктов биотехнологических процессов
- •87. Проблема сбалансированных кормов и питания
- •88.Продуценты белка. Требования, предъявляемые к микробному белку и возможности его использования.
- •89.Сырьевая база производства белка одноклеточных организмов: высокоэнергетические субстраты, отходы сельского хозяйства и других производств. Одноклеточный белок на высокоэнергетических субстратах
- •90. Принципиальная схема производственного процесса белка одноклеточных
- •91.Лимитирующий фактор и его роль в процессах непрерывного культивирования
- •92. Технология производства ферментов для промышленных целей. Требования, предъявляемые к продуцентам ферментов.
- •93. Иммобилизованные ферменты и преимущества применения в биотехнологии.
- •94. Носители, используемые для иммобилизации ферментов: природные и синтетические органические носители. Типы неорганических носителей.
- •95.Способы иммобилизации ферментов
- •96. Иммобилизованные клетки в биотехнологии:
- •97. Генетическая инженерия и биотехнология.
- •98. Генетическая инженерия и технология рекомбинантных молекул
- •99.Основные окрытия, теоретически обосновавшие технологический подход к наследственной информации.
- •100. Общие понятия о матричных процессах: репликация, транскрипция, трансляция.
- •101. Инструменты генетической инженерии
- •102. Принципы создания рекомбинантных молекул in vivo.
- •103. Поняте о репликоне. Основные типы репликонов
- •104.Рестрицирующие эндонуклеазы, их основные характеристики область применения
- •105.Способы «нарезания» фрагментов днк.(104).
- •106. Способы идентификации фрагментов днк.
- •107.Требование к базовым штаммам в генной инженерии.
- •108. Характеристика e.Coli, как основного базового штамма в генной инженерии.
- •109. Особенности грамположительных бактерий при ги манипуляциях.
- •110.Гибридизационные зонды
- •111. Рестрикционное картирование генетических элементов
- •112.Соединение фрагментов днк:
- •113. Обратная транскриптаза и её использование в генной инженерии.
- •115.Метод создания гомополимерных окончаний при получении рекомбинантных молекул днк.
- •116. Использование линкерных полинуклеотидов в технологии клонирования днк.
- •117. Понятие вектора
- •118. Общие свойства векторов.
- •119. Специализированные векторные системы
- •120.Векторные системы,применяемые применяемые при молекулярном клонировании в клетках прокариотических организмов:
- •121. Типы векторов: плазмидные и фаговые векторы(в) природного и искусственного происхождения.
- •122. Клеточные генетические структуры способные выполнять роль векторов
- •123. Принципы конструирования векторов.
- •124. Требования к идеальному плазмидному вектору.
- •125. Свойства фага с точки зрения вектора для создания рекомбинантных молекул.
- •126.Фаг л и векторы, сконструированные на основе его генома.
- •127 Фазмиды и их применение
- •128.Космиды и их применение
- •129. Упаковочная система фага лямбда.
- •130. Банки генов и клонотеки
- •131.Свойства нитевидных фагов, позволяющие им выступать в качестве векторов
- •132. Векторы на основе генома нитевидных фагов.
- •133. Особенности трансформации грамотрицательных и грамположительных бактерий
- •134.Векторы для клонирования в грамположительных бактриях
- •135. Челночные векторы (бинарные)
- •136.Векторные системы для клонирования в клетках дрожжей:
- •137.Генетическая инженерия эукариотических микроорганизмов. Сахаромицеты как базовый организм.(136)
- •138. Использование вирусных геномов в качестве векторов для введения генетической информации в клетки животных
- •139.Свойства вируса sv40 и векторов на его основе.
- •140. Природные векторы для растений.
- •141. Организация и «поведение» Ti- плазмиды.
- •142. Стратегия клонирования у грамотрицательных бактерий.
- •143. Стратегия клонирования в грамположительных бактериях
- •144.Стратегия клонирования в дрожжевых клетках
- •145.Стратегия клонирования в клетках млекопитающих:
- •146. Старатегия клонирования в клетках растений
- •147.Экспрессия чужеродной генетической информации в клетках бактерий, дрожжей, растений и животных.
- •148. Особенности организации векторных систем для экспрессии генов.(
- •149. Сложная структура организации эукариотических генов и их экспрессия в прокариотических клетках.
- •150. Получение продуцента человеческого гормона роста
- •152. Методы поиска генов в банках генов и клонотеках.
- •153.Способы введения клонируемой днк в клетки бактерий. (с помощью вирусов.)
- •154. Способы введения рекомбинантной Днк в клетки растений и животных
- •154.*На листике.Методы отбора клеток, наследующих рекомбинантные молекулы с необходимым геном.
- •155.Методы культивирования клеток высших растений.
- •156. Каллусные и суспензионные культуры; методы получения и область использования.
- •157. Протопласты растительных клеток; способы получения, методы культивирования и регенерации.
- •158. Слияние протопластов растительных клеток и методы реверсии. Гибридизация соматических клеток растений.
- •159. Культивирование клеток и тканей животных
- •161.Необходимые условия для культивирования клеток животных. Конструктивные особенности биореакторов.
- •162. Моноклональные антитела и технология гибридом
- •163.Биотехнология и сельское хозяйство.
- •164. Использование биотехнологических подходов в растениеводстве и животноводстве.
- •165. Биотехнология и медицина. Применение моноклональных антител.
- •166. Энергетика и биотехнология. Биотехнологические способы получения энергоносителей.
- •167. Биотехнология и ос
- •168.Социальные аспекты биотехнологии и биоинженерии
43. Сырье и питательные среды.
Наиболее важным критерием, определяющим выбор сырья для биотехнологических процессов, являются: стоимость, наличие в достаточных количествах, химический состав, форма и степень окисленности источника углерода и т. п. В настоящее время наиболее широко используемыми и коммерчески выгодными материалами являются крахмал (преимущественно кукурузный), метанол, меласса и сырой сахар. Практически нет сомнения в том, что зерновые (в частности, кукуруза, рис и пшеница) будут основными краткосрочными сырьевыми материалами для биотехнологических процессов именно в тех странах, где развиты интенсивные биотехнологические процессы.
В качестве резюме следует отметить, что биотехнология на современном этапе своего развития преимущественно ориентируется на различные виды недорогого, легкодоступного и возобновляемого сырья, наиболее значимым из которого является растительная масса. При конверсии субстратов в биотехнологических процессах основное внимание обращается на создание безотходных производств, когда побочные продукты одного процесса служат питательными субстратами для последующего.
Среды, предназначаемые для ферментационных процессов
Превалирующим компонентом всех (или почти всех) биотехнологических процессов является вода. В лабораторных условиях можно легко определить специфические потребности любого конкретного организма и затем (с известной долей приближения) экстраполировать на производственный уровень.
Питательная среда обеспечивает жизнедеятельность, рост, развитие биообъекта, эффективный синтез целевого продукта. Неотъемлемой частью питательной среды является вода, питательные вещества, которые образуют истинные растворы (минеральные соли, аминокислоты, карбоновые кислоты, спирты, альдегиды и т.д.) и коллоидные растворы (белки, липиды, неорганические соединения - гидроксид железа). Отдельные компоненты могут находиться в твердом агрегатном состоянии, могут всплывать, равномерно распределяться по всему объему в виде взвеси или образовывать придонный слой.
Сырье, используемое для получения целевого продукта, должно быть недефицитным, недорогим, по возможности легко доступным: меласса - побочный продукт производства сахара, компоненты нефти и природного газа, отходы сельского хозяйства, деревообрабатывающей и бумажной промышленностей и т.д. Наиболее часто в качестве компонентов питательных сред используются отходы пищевых производств.
44. Основные типы питательных сред и принципы их выбора.
Питательные среддля выращивания объектов биотехнологии, т. е. продуцентов тех или иных соединений, могут быть неопределенного состава и включать различные биогенные добавки (растительные, животные или микробные) - мясной экстракт, кукурузную муку, морские водоросли и т. п. – сложные. Применяются также среды из чистых хим соединений определенного состава, так называемые синтетические (простые). ПС призваны обеспечивать жизнеспособность, рост и развитие соответствующих продуцентов, а также синтез целевого продукта с максимальной эффективностью. Требования к ПС, используемым в биотехнологии, ничем не отличаются от требований, предъявляемым к питательным средам, применяемым в микробиологии для культивирования тех или иных микроорганизмов. Для приготовления питательных сред в биотехнологии используются разнообразные субстраты, которые должны удовлетворять определенным критериям.
Субстрат представляет собой сырье для получения целевого продукта и должен быть недефицитным, дешевым, по возможности легко доступным.
Все питательные среды по составу делятся на натуральные и синтетические. Натуральными называют среды, которые состоят из продуктов животного или растительного происхождения. К средам такого типа от-носятся овощные или фруктовые соки, ткани животных, молоко, отвары мяса, вытяжки почвы, различные части растений, клетки микроорганизмов. На натуральных средах хорошо развиваются многие микроорганиз-мы, поскольку такие среды содержат все компоненты, необходимые для их роста и развития. Однако эти среды имеют сложный, непостоянный химический состав и мало пригодны для изучения обмена веществ мик-роорганизмов, так как в них трудно учесть потребление ряда компонен-тов и образование продуктов метаболизма. Натуральные среды исполь-зуются главным образом для поддержания культур микроорганизмов, накопления биомассы и для диагностических целей. Синтетические среды – это среды, в которые входят соединения определенного химического состава, взятые в точно указанных количест-вах. Они широко используются при исследовании обмена веществ, фи-зиологии и биохимии микроорганизмов. Наряду с натуральными и синтетическими выделяют полусинтети-ческие среды. Главными компонентами полусинтетических сред являются соединения известного химического состава – углеводы, соли аммония или нитраты, фосфаты и др. Однако в них всегда включаются веще-ства неопределенного состава, такие как дрожжевой, почвенный, куку-рузный экстракт или гидролизат казеина. Эти среды находят широкое применение в промышленной микробиологии для получения аминокис-лот, витаминов, антибиотиков и других важных продуктов жизнедеятельности микроорганизмов.
По назначению среды подразделяют на элективные и дифференциально-диагностические. Элективные среды предназначены для выделения микроорганизмов из мест их естественного обитания. Они обеспечи-вают преимущественное развитие определенной физиологической груп-пы микроорганизмов. Дифференциально-диагностические среды дают возможность быстро отличить одни виды микроорганизмов от других и выявить некоторые их особенности. Эти среды особенно широко применяются в санитарной и медицинской микробиологии для быстрой иден-тификации микроорганизмов. Примером таких сред являются среды Гисса, которые используются для изучения сахаролитических свойств микроорганизмов, т. е. способности ферментировать те или иные углеводы и спирты.
По физическому состоянию различают жидкие, сыпучие, плотные, или твердые, среды. Жидкие среды применяют для накопления биомас-сы или продуктов обмена, для исследования физиологии и биохимии микроорганизмов. Сыпучие среды применяют главным образом в промышленной микробиологии для культивирования некоторых продуцентов физиологически активных соединений. К таким средам относятся, например, разваренное пшено, отруби и др. Плотные среды используют для выделения чистых культур, определения количества жизнеспособных микроорганизмов, хранения культур в коллекциях, для накопления биомассы и др. В целях уплотнения сред применяют агар, желатину или силикагель (кремнекислый гель). Для уплотнения чаще всего используют агар.
45.????????