Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
билеты по физике.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
655.17 Кб
Скачать

Билеты по физике

Билет1:Испарение твердого тела называется сублимацией (возгонкой), а парообразование в объёме жидкости — кипением. Обычно под испарением понимают парообразование на свободной поверхности жидкости в результате теплового движения её молекул при температуре ниже точки кипения, соответствующей давлению газовой среды, расположенной над указанной поверхностью. При этом молекулы, обладающие достаточно большой кинетической энергией, вырываются из поверхностного слоя жидкости в газовую среду; часть их отражается обратно и захватывается жидкостью, а остальные безвозвратно ею теряются.

Испарение — эндотермический процесс, при котором поглощается теплота фазового перехода — теплота испарения, затрачиваемая на преодоление сил молекулярного сцепления в жидкой фазе и на работу расширения при превращении жидкости в пар. Удельную теплоту испарения относят к 1 молю жидкости (молярная теплота испарения, Дж/моль) или к единице её массы (массовая теплота испарения, Дж/кг). Скорость испарения определяется поверхностной плотностью потока пара jп, проникающего за единицу времени в газовую фазу с единицы поверхности жидкости [в моль/(с.м2) или кг/(с.м2)]. Наибольшее значение jп достигается в вакууме. При наличии над жидкостью относительно плотной газовой среды испарение замедляется вследствие того, что скорость удаления молекул пара от поверхности жидкости в газовую среду становится малой по сравнению со скоростью испускания их жидкостью. При этом у поверхности раздела фаз образуется слой парогазовой смеси, практически насыщенный паром. Парциальное давление и концентрация пара в данном слое выше, чем в основной массе парогазовой смеси.

Процесс испарения зависит от интенсивности теплового движения молекул: чем быстрее движутся молекулы, тем быстрее происходит испарение. Кроме того, немаловажными факторами, влияющими на процесс испарения, являются скорость внешней (по отношению к веществу) диффузии, а также свойства самого вещества. Проще говоря, при ветре испарение происходит гораздо быстрее. Что же касается свойств вещества, то, к примеру, спирт испаряется гораздо быстрее воды. Важным фактором является также площадь поверхности жидкости, с которой происходит испарение: из узкого графина оно будет происходить медленнее, чем из широкой тарелки.

Конденса́ция паров (лат. condense — уплотняю, сгущаю) — переход вещества в жидкое или твёрдое состояние из газообразного. Максимальная температура, ниже которой происходит конденсация, называется критической. Пар, из которого может происходить конденсация, бывает насыщенным или ненасыщенным.

Пар — газообразное состояние вещества в условиях, когда газовая фаза может находиться в равновесии с жидкой или твёрдой фазами того же вещества. Процесс возникновения пара из жидкой (твёрдой) фазы называется «парообразованием». Обратный процесс называется конденсация. При низких давлениях и высоких температурах свойства пара приближаются к свойствам идеального газа. В разговорной речи под словом «пар» почти всегда понимают водяной пар. Пары́ прочих веществ оговариваются в явном виде.

Насы́щенный пар — это пар, находящийся в термодинамическом равновесии с жидкостью или твёрдым телом того же состава.

Давление насыщенного пара связано определённой для данного вещества зависимостью от температуры. Когда внешнее давление падает ниже давления насыщенного пара, происходит кипение (жидкости) или возгонка (твёрдого тела); когда оно выше — напротив, конденсация или десублимация.

Ненасыщенный пар — пар, не достигший термодинамического равновесия со своей жидкостью. При данной температуре давление ненасыщенного пара всегда меньше давления насыщенного пара. При наличии над поверхностью жидкости ненасыщенного пара процесс парообразования преобладает над процессом конденсации, и потому жидкости в сосуде с течением времени становится все меньше и меньше.

Билет2: критич состояние вещества-С повышением температуры плотность насыщенного пара увеличивается, а плотность жидкости в результате теплового расширения уменьшается.

Температура, при которой плотность жидкости и плотность ее насыщенного пара становятся одинаковыми, называется критической.

При критической температуре различия между жидкостью и паром стираются. Вещество при этом находится в критическом состоянии, и параметры этого состояния называются критическими. Для воды, например, tкр = 374 °C, pкр = 219 атм, кр = 329 кг/м3.

Кипение.

Парообразование, происходящее в объеме всей жидкости при постоянной температуре, называется кипением.

Условие кипения:

Жидкость закипает при такой температуре, при которой давление ее насыщенного пара сравнивается с внешним давлением.

Таким образом, температура кипения жидкости не является фиксированной величиной. При понижении внешнего давления температура кипения уменьшается, а при повышении – увеличивается.

Вода, например, закипает при 100 °C только, если давление равно 1-й атмосфере. При давлении 0,5 атмосфер вода закипит при 80 °C, а при давлении 2 атмосферы – при 120 °C.

Билет3:

Влажность воздуха.

Количество водяного пара, содержащегося в 1 м3 воздуха, называется абсолютной влажностью.

[а ] = г/м3.

Относительная влажность воздуха это число, показывающее сколько процентов от плотности насыщенного пара при данной температуре составляет абсолютная влажность.

Температура, при которой воздух в процессе своего охлаждения становится насыщенным водяными парами, называется точкой росы.

[tр ] = °C

Билет4

Аморфные тела и кристаллы. Аморфными называются тела, физические свойства которых одинаковы по всем направлениям. Примерами аморфных тел могут служить куски затвердевшей смолы, янтарь, изделия из стекла. Аморфные тела являются изотропными телами. Изотропность физических свойств аморфных тел объясняется беспорядочностью расположения составляющих их атомов и молекул. Твердые тела, в которых атомы или молекулы расположены упорядоченно и образуют периодически повторяющуюся внутреннюю структуру, называются кристаллами.

Физические свойства кристаллических тел неодинаковы в различных направлениях, но совпадают в параллельных направлениях. Это свойство кристаллов называется анизотропностью. Кристалл поваренной соли при раскалывании дробится на части, ограниченные плоскими поверхностями, пересекающимися под прямыми углами. Эти плоскости перпендикулярны особым направлениям в образце, по этим направлениям его прочность минимальна.

Анизотропия механических, тепловых, электрических и оптических свойств кристаллов объясняется тем, что при упорядоченном расположении атомов, молекул или ионов силы взаимодействия между ними и межатомные расстояния оказываются неодинаковыми по различным направлениям.

Кристаллические тела делятся на монокристаллы и поликристаллы. Монокристаллы иногда обладают геометрически правильной внешней формой, но главный признак монокристалла — периодически повторяющаяся внутренняя структура во всем его объеме. Поликристаллическое тело представляет собой совокупность сросшихся друг с другом хаотически ориентированных маленьких кристаллов — кристаллитов. Поликристаллическую структуру чугуна, например, можно обнаружить, если рассмотреть с помощью лупы образец на изломе. Каждый маленький монокристалл поликристаллического тела анизотропен, но поликристаллическое тело изотропно.

Билет 5

Деформа́ция (от лат. deformatio — «искажение») — изменение взаимного положения частиц тела, связанное с их перемещением относительно друг друга. Деформация представляет собой результат изменения межатомных расстояний и перегруппировки блоков атомов. Обычно деформация сопровождается изменением величин межатомных сил, мерой которого является упругое механическое напряжение.Причины отказа механики

Деформации разделяют на обратимые (упругие) и необратимые (пластические, ползучести). Упругие деформации исчезают после окончания действия приложенных сил, а необратимые — остаются. В основе упругих деформаций лежат обратимые смещения атомов металлов от положения равновесия(другими словами, атомы не выходят за пределы межатомных связей); в основе необратимых — необратимые перемещения атомов на значительные расстояния от исходных положений равновесия(т.е. выход за рамки межатомных связей, после снятия нагрузки переориентация в новое равновесное положение).

Пластические деформации — это необратимые деформации, вызванные изменением напряжений. Деформации ползучести — это необратимые деформации, происходящие с течением времени. Способность веществ пластически деформироваться называется пластичностью. При пластической деформации металла одновременно с изменением формы меняется ряд свойств — в частности, при холодном деформировании повышается прочность.

Виды:

Растяжение-сжатие — в сопротивлении материалов — вид продольной деформации стержня или бруса, возникающий в том случае, если нагрузка к нему прикладывается по его продольной оси (равнодействующая сил, воздействующих на него, нормальна поперечному сечению стержня и проходит через его центр.

Сдвиг — в сопротивлении материалов — вид продольной деформации бруса, возникающий в том случае, если сила прикладывается касательно его поверхности (при этом нижняя часть бруска закреплена неподвижно).

Изгиб — вид деформации, при котором происходит искривление осей прямых брусьев или изменение кривизны осей кривых брусьев. Изгиб связан с возникновением в поперечных сечениях бруса изгибающих моментов. Прямой изгиб возникает в случае, когда изгибающий момент в данном поперечном сечении бруса действует в плоскости, проходящей через одну из главных центральных осей инерции этого сечения. В случае, когда плоскость действия изгибающего момента в данном поперечном сечении бруса не проходит ни через одну из главных осей инерции этого сечения, называется косым.

Круче́ние — один из видов деформации тела. Возникает в том случае, если нагрузка прикладывается к телу в виде пары сил (момента) в его поперечной плоскости. При этом в поперечных сечениях тела возникает только один внутренний силовой фактор — крутящий момент. На кручение работают пружины растяжения-сжатия и валы.

Закон Гука (деформация растяжения) — деформация, при которой происходит изменение только одного линейного размера тела. Количественно она характеризуется абсолютным Δl и относительным ε удлинением.

— абсолютное удлинение, где l и l0 — длины тела в деформированном и недеформированном состояниях соответственно

Небольшие и кратковременные деформации с достаточной степенью точности могут рассматриваться как упругие. Для таких деформаций Роберт Гук экспериментально установил закон.

Сила упругости, возникающая при деформации тела, прямо пропорциональна абсолютному удлинению тела и направлена в сторону, противоположную направлению смещения частиц тела:

— закон Гука.

Здесь Fx — проекция силы на ось Ox, k — жесткость тела, зависящая от размеров тела и материала, из которого оно изготовлено.

Жесткость численно равна силе упругости, возникающей в теле при единичном абсолютном удлинении.

В СИ единицей жесткости является ньютон на метр (Н/м)

На законе Гука основано действие динамометра — прибора, предназначенного для измерения сил.

На практике часто трудно определить величину деформации, так как она мала.

Билет 6

Закон сохранения электрического заряда.

В замкнутой системе алгебраическая сумма зарядов всех частиц остается неизменной.

( ... но, не числа заряженных частиц, т.к. существуют превращения элементарных частиц).

В 1785 г. французский физик Шарль Кулон экспериментально установил основной закон электростатики – закон взаимодействия двух неподвижных точечных заряженных тел или частиц.

Закон взаимодействия неподвижных электрических зарядов – закон Кулона – основной (фундаментальный) физический закон и может быть установлен только опытным путем. Ни из каких других законов природы он не вытекает.

Если обозначить модули зарядов через |q1| и |q2|, то закон Кулона можно записать в следующей форме:

где k – коэффициент пропорциональности, значение которого зависит от выбора единиц электрического заряда. В системе СИ Н·м2/Кл2, где ε0 – электрическая постоянная, равная 8,85·10-12 Кл2/Н·м2

Формулировка закона:

сила взаимодействия двух точечных неподвижных заряженных тел в вакууме прямо пропорциональна произведению модулей зарядов и обратно пропорциональна квадрату расстояния между ними.

Билет7

Электрическое поле — одна из составляющих электромагнитного поля; особый вид материи, существующий вокруг тел или частиц, обладающих электрическим зарядом, а также при изменении магнитного поля (например, в электромагнитных волнах). Электрическое поле непосредственно невидимо, но может быть обнаружено благодаря его силовому воздействию на заряженные тела.

Электрическое поле материально, т.е. существует независимо от наших знаний о нем.

Порождается электрическим зарядом: вокруг любого заряженного тела существует электрическое поле.

Поле, созданное неподвижными электрическими зарядами, называется электростатическим.

Электрическое поле может быть создано и переменным магнитным полем. Такое электрическое поле называется вихревым.

Обнаружить электрическое поле можно по действию его на электрические заряды с некоторой силой.

Электрическое поле распространяется в пространстве с конечной скоростью, равной скорости света в вакууме.

Таким образом, если один из взаимодействующих зарядов переместить в другую точку пространства, то второй заряд почувствует изменение положения первого заряда не мгновенно, а спустя некоторый промежуток времени , где с — скорость света в вакууме, l — расстояние между зарядами.

Билет 8

В механике было показано, что при перемещении между двумя точками в гравитационном поле работа силы тяжести не зависит от траектории движения тела. Силы гравитационного и электростатического взаимодействия имеют одинаковую зависимость от расстояния, векторы сил направлены вдоль прямой, соединяющей взаимодействующие точечные тела. Отсюда следует, что и при перемещении заряда в электрическом поле из одной точки в другую работа сил электрического поля не зависит от траектории его движения.

Этот вывод подтверждается самыми точными экспериментами.

НАПРЯЖЕНИЕ механическое, мера внутренних сил, возникающих в деформируемом теле под влиянием внешнего воздействия. Напряжение определяется с помощью косвенных экспериментов (оптических и тензометрических) по создаваемой им деформации.

Билет 9

  • Проводники- вещества, в которых свободные заряды перемещаются по всему объёму.

Свободные заряды- заряженные частицы одного знака, способные перемещаться под действием электрического поля

  • Электростатическая индукция-перераспределение зарядов на поверхности проводника, помещенного в электростатическое поле.

Напряженность поля внутри проводника равна нулю (электростатическая защита).

  • Линии напряженности перпендикулярны поверхности проводника.

  • Поверхность металла-эквипотенциальная поверхность.

Билет 10

Полупроводники́ — материалы, которые по своей удельной проводимости занимают промежуточное место между проводниками и диэлектриками и отличаются от проводников сильной зависимостью удельной проводимости от концентрации примесей, температуры и воздействия различных видов излучения. Основным свойством этих материалов является увеличение электрической проводимости с ростом температуры[1].

Полупроводниками являются вещества, ширина запрещённой зоны которых составляет порядка нескольких электрон-вольт (эВ). Например, алмаз можно отнести к широкозонным полупроводникам, а арсенид индия — к узкозонным. К числу полупроводников относятся многие химические элементы (германий, кремний, селен, теллур, мышьяк и другие), огромное количество сплавов и химических соединений (арсенид галлия и др.). Почти все неорганические вещества окружающего нас мира — полупроводники. Самым распространённым в природе полупроводником является кремний, составляющий почти 30 % земной коры

Билет 11

Электроемкость, отношение количества электричества, имеющегося в каком-либо проводящем теле, к величине потенциала этого тела, при условии, что все проводящие тела, находящиеся вблизи этого тела, соединены с землею.

Конденса́тор (от лат. condensare — «уплотнять», «сгущать») — двухполюсник с определённым значением ёмкости и малой омической проводимостью; устройство для накопления заряда и энергии электрического поля. Конденсатор является пассивным электронным компонентом. Обычно состоит из двух электродов в форме пластин (называемых обкладками), разделённых диэлектриком, толщина которого мала по сравнению с размерами обкладок.

Конденсаторы (совместно с катушками индуктивности и/или резисторами) используются для построения различных цепей с частотно-зависимыми свойствами, в частности, фильтров, цепей обратной связи, колебательных контуров и т. п.

При быстром разряде конденсатора можно получить импульс большой мощности, например, в фотовспышках, электромагнитных ускорителях, импульсных лазерах с оптической накачкой, генераторах Маркса, (ГИН; ГИТ), генераторах Кокрофта-Уолтона и т. п.

Так как конденсатор способен длительное время сохранять заряд, то его можно использовать в качестве элемента памяти или устройства хранения электрической энергии.

В промышленной электротехнике конденсаторы используются для компенсации реактивной мощности и в фильтрах высших гармоник.

Конденсаторы способны накапливать большой заряд и создавать большую напряжённость на обкладках, которая используется для различных целей, например, для ускорения заряженных частиц или для создания кратковременных мощных электрических разрядов (см. генератор Ван де Граафа).

Измерительный преобразователь (ИП) малых перемещений: малое изменение расстояния между обкладками очень заметно сказывается на ёмкости конденсатора.

ИП влажности воздуха, древесины (изменение состава диэлектрика приводит к изменению ёмкости).

В схемах РЗиА конденсаторы используются для реализации логики работы некоторых защит. В частности, в схеме работы АПВ использование конденсатора позволяет обеспечить требуемую кратность срабатывания защиты.

Измерителя уровня жидкости. Непроводящая жидкость заполняет пространство между обкладками конденсатора, и ёмкость конденсатора меняется в зависимости от уровня

Фазосдвигающего конденсатора. Такой конденсатор необходим для пуска, а в некоторых случаях и работы однофазных асинхронных двигателей. Так же он может применяться для пуска и работы трехфазных асинхронных двигателей при питании от однофазного напряжения.

Аккумуляторов электрической энергии. В этом случае на обкладках конденсатора должно быть достаточно постоянное значения напряжения и тока разряда. При этом сам разряд должен быть значительным по времени. В настоящее время идут опытные разработки электромобилей и гибридов с применением конденсаторов. Так же существуют некоторые модели трамваев в которых конденсаторы применяются для питания тяговых электродвигателей при движении по обесточенным участкам.

Билет 12

Бумажные конденсаторы-Пропитанная бумага широко использовалась в старых конденсаторах. В качестве пропитки использовался воск, масло или эпоксидная смола.

Металлизированные бумажные конденсаторы- Меньший размер, чем у бумажно-фольговых конденсаторов

Полиэтилентерефталатные конденсаторы - ПЭТ конденсаторы почти полностью заменили бумажные для задач, где требуется работа с прямым током.

Полиамидные плёночные конденсаторы

Каптоновые конденсаторы

Полистирольные конденсаторы

Поликарбонатные плёночные конденсаторы

Полипропиленовые конденсаторы

Полисульфоновые плёночные конденсаторы

Тефлоновые конденсаторы

Металлизированные плёночные конденсаторы

Многоуровневые пластинчатые слюдяные конденсаторы

Металлизированные или серебряные слюдяные конденсаторы

Стеклянные конденсаторы

Температурно-компенсированные керамические конденсаторы

Керамические конденсаторы с высокой диэлектрической постоянной

Алюминиевые электролитические конденсаторы

Танталовые конденсаторы

Твердотельные конденсаторы

Литий-ионные конденсаторы

Конденсаторы с двойным электрическим слоем (ионисторы)

Масляные конденсаторы переменного тока

Масляные конденсаторы постоянного тока

Энергонакопительные конденсаторы

Вакуумные конденсаторы

Билет 13

где С - емкость конденсатора

q - заряд конденсатора

U - напряжение на обкладках конденсатора

Энергия конденсатора равна работе, которую совершит электрическое поле при сближении пластин конденсатора вплотную,

или равна работе по разделению положительных и отрицательных зарядов , необходимой при зарядке конденсатора

билет 14

Электрическое поле обладает энергией. Плотность этой энергии определяется величиной поля и может быть найдена по формуле

где E — напряжённость электрического поля, D — индукция электрического пол