
- •1. Интегралы вида .
- •2. Интегралы вида .
- •4. Метод замены переменной интегрирования.
- •Тема: Неопределенный интеграл
- •Лекция № 1 “Неопределенный интеграл и его свойства”
- •1. Первообразная. Неопределенный интеграл.
- •2. Свойства неопределенного интеграла.
- •3. Таблица основных неопределенных интегралов.
- •Лекция № 2 “Методы интегрирования”
- •1. Метод тождественных преобразований подинтегральной функции.
- •1. Почленное деление числителя дроби на ее знаменатель .
- •2. Метод замены переменной интегрирования.
- •3. Метод интегрирования по частям.
- •4. Нестандартные интегралы требуют для своего вычисления приобретения опыта на практических занятиях.
- •Лекция № 3 “Комплексные числа”
- •1. Формы записи комплексного числа.
- •2. Действия с комплексными числами.
- •3.Показательная форма записи комплексного числа.
- •Лекция № 4 “Интегрирование рациональных дробей”
- •1. Полиномы. Разложение полиномов на простые множители.
- •2. Итегрирование рациональных дробей.
- •5. Сумма простых дробей приводится к общему знаменателю и числитель получившейся дроби приравнивается к числителю исходной дроби
- •7. Решают слау и находят числовые значения неизвестных коэф-фициентов
- •3. Интегрирование простых дробей.
- •Лекция № 5 “Интегрирование тригонометрических функций”
- •1. Универсальная тригонометрическая подстановка.
- •2. Интегралы вида ( и – целые числа).
- •3. Интегралы вида , , .
- •4. Интегралы вида и
- •5. Интегралы вида и
- •Лекция № 6 “Интегрирование некоторых иррациональных функций”
- •1. Интегралы вида .
- •2. Интегралы вида .
- •3. Понятие о неберущихся интегралах.
- •Тема: Определенный интеграл Лекция № 7 “Определенный интеграл и его свойства”
- •1. Задачи, приводящие к понятию определенного интеграла.
- •2. Свойства определенного интеграла.
- •1. Определенный интеграл от линейной комбинации функций равен той же линейной комбинации определенных интегралов от этих функ-ций
- •6. (Аддитивность определенного интеграла) Если точка , то
- •7. Значение определенного интеграла не зависит от того, какой буквой обозначается переменная интегрирования в определенном интеграле
- •3. Неравенства для определенных интегралов.
- •Лекция № 8 “Методы вычисления определенного интеграла”
- •1. Вычисление определенного интеграла на основе его определения.
- •2. Производная от определенного интеграла с
- •3. Формула Ньютона-Лейбница.
- •4. Метод замены переменной интегрирования.
- •5. Интегрирование по частям в определенном интеграле.
- •6. Определенный интеграл от четной и нечетной функций
- •Лекция № 9 “Геометрические приложения определенного интеграла”
- •1. Площадь плоской фигуры.
- •2. Вычисление объема и площади поверхности тела.
- •3. Длина дуги.
- •Лекция № 10 “Несобственные интегралы”
- •1. Определенные интегралы с одним или двумя бесконечными пределами интегрирования от непрерывной на интервале интегрирования функции.
- •2. Определенные интегралы с конечными пределами интегрирования от
- •Лекция № 11 “Применение определенного интеграла в науке и технике”
- •1. Работа по сжатию пружины.
- •2. Работа по откачке жидкости из резервуара.
- •3. Работа по постройке пирамиды.
- •4. Давление жидкости на вертикально погруженную стенку.
- •5. Вторая космическая скорость.
- •6. Численность популяции с перекрывающимися поколениями.
- •Тема: Дифференциальные уравнения Лекция № 12 “Дифференциальные уравнения I порядка”
- •1. Основные определения.
- •2. Дуi с разделяющимися переменными.
- •Лекция № 13 “Однородные и линейные ду I”
- •1. Однородные ду I.
- •2. Линейные ду I.
- •3. Уравнение Бернулли.
- •Лекция № 14 “Дифференциальные уравнения второго порядка”
- •1. Дифференциальные уравнения II порядка, сводящиеся к ду I.
- •2.Линейные ду II.
- •Лекция № 15 “Линейные однородные ду II с постоянными коэффициентами”
- •1. Характеристическое уравнение для лоду II.
- •2. Линейные неоднородные ду II с постоянными коэффициентами.
- •3. Метод вариации постоянных.
- •Лекция № 16 “лнду II с постоянными коэффициентами со специальной правой частью”
- •1. Лнду II со специальной правой частью.
- •2. Принцип суперпозиции частных решений.
- •Лекция № 17 “Применение ду II к изучению механических и электрических колебаний”
- •1. Колебания тела на пружине.
- •2. Колебания в электрическом контуре.
- •Тема: Ряды Лекция № 18 “Числовые ряды и их свойства”
- •1. Понятие числового ряда.
3. Таблица основных неопределенных интегралов.
Подинтегральная функция |
Неопределенный интеграл |
Частные случаи |
|
|
|
Степенная
|
|
|
|
|
|
Показательная
|
|
|
Тригонометрические
|
|
|
|
|
|
|
|
|
Пример 3.
Используя таблицу неопределенных
интегралов, вычислить интегралы
(самостоятельно).
Лекция № 2 “Методы интегрирования”
1. Метод тождественных преобразований подинтегральной функции.
Данный метод основан на использовании простых приемов, алгебраических и тригонометрических формул, свойств подинтегральной функции, разложения полиномов на простые множители и свойств неопределенного интеграла. Рассмотрим этот метод на конкретных примерах.
1. Почленное деление числителя дроби на ее знаменатель .
З1. Следует
запомнить, что
нет
формулы почленного деления знаменателя
дроби на ее числитель,
т.е.
.
Пример 1.
Найти
.
Выполним в подинтегральной функции почленное деление числителя дроби на ее знаменатель и воспользуемся свойством линейности неопределенного интеграла
.
З2. Из этого примера видно, что слова “найти неопределенный интеграл” означают за счет преобразований подинтегральной функции и использования свойств неопределенного интеграла данный интеграл надо привести к совокупности табличных интегралов и воспользоваться этой таблицей.
33. Из примера также видно, что, несмотря на наличие двух табличных интегралов, константа интегрирования пишется один раз, так сумма или разность постоянных интегрирования все равно есть постоянная величина.
2. Использование противоположных арифметических операций (например, сложение-вычитание).
Пример 2.
Найти
.
Анализ подинтегральной функции показывает, что в числитель дроби надо добавить и вычесть 1 (при этом подинтегральная функция не изменится), а затем воспользоваться первым приемом (почленное деление числителя дроби на ее знаменатель)
.
3. Использование алгебраических и тригонометрических формул, например,
и других формул.
Пример 3.
Найти
.
Воспользуемся формулой квадрата разности
.
Пример 4.
Найти
.
Поступим аналогично примеру 3
.
4. Использование свойств функций, например,
.
Пример 5.
Вычислить
.
.
Пример 6.
Вычислить
.
.
5.
Использование разложения полиномов на
простые множители, например,
,
где
и
корни уравнения
.
Пример 7.
Найти
.
По теореме Виета
уравнение
имеет корни
и
,
сле-довательно, разложение квадратичного
полинома на простые множители имеет
вид:
.
Подставим полученное выражение в
под-интегральную функцию, получим
.