Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Otvety_na_voprosy_k_ekzamenu.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
856.06 Кб
Скачать

8.Емкость в цепи переменного тока. Рис. 2.12

Зададим изменение тока в емкости по синусоидальному закону

i(t) = ImC sin(ωt + ψi).

Используем уравнением связи между током и напряжением в емкости

uC = 1 / C · ∫ i dt,

и получим

uC = 1 / (ωC) · ImC (-cos(ωt + ψi)).

Заменим –cos на sin

(2.23) uC = 1 / (ωC) · ImC sin(ωt + ψi - 90°).

Формальная запись синусоидального напряжения имеет вид

(2.24) uC = UmC sin(ωt + ψu).

Соотношения (2.23) и (2.24) будут равны если выполняется условие равенства амплитуд и фаз

(2.25) UmC = 1 / (ωC) · ImC,

(2.26) ψu = ψi - 90°.

Уравнение (2.25) можно переписать для действующих значений (2.27) UC = 1 / (ωC) · IC.

Уравнение (2.26) показывает, что фаза напряжения в емкости отстает от фазы тока на 90°. Величину XC = 1 / (ωC) в уравнении (2.25) называют емкостным сопротивлением цепи и измеряют его в Омах. Графически электрические процессы в емкости представлены на рис. 2.13, 2.14.

Рис. 2.13 и 2.14

9. Индуктивность в цепи переменного тока.

Зададим изменение тока в индуктивности по синусоидальному закону

i(t) = ImL sin(ωt + ψi).

Используем уравнение связи между током и напряжением в индуктивности

uL = L · di / dt

и получим

uL(t) = ωL · ImL cos(ωt + ψi).

Заменим cos на sin и получим

(2.18) uL(t) = ωL · ImL sin(ωt + ψi + 90°).

Формальная запись синусоидального напряжения имеет вид

(2.19) uL(t) = UmL sin(ωt + ψu).

Соотношения (2.18) и (2.19) будут равны если выполняется условие равенства амплитуд и фаз

(2.20) UmL = ωL · ImL, (2.21) ψu = ψi + 90°.

Уравнение (2.20) можно переписать для действующих значений

(2.22) UL = ωL · IL.

Уравнение (2.21) показывает, что фаза тока в индуктивности отстает от фазы напряжения на 90°. Величину XL = ωL в уравнении (2.20) называют индуктивным сопротивлением. Единицей его измерения является Ом. Графически электрические процессы в индуктивности представлены на рис. 2.10, 2.11.

Рис. 2.10 и 2.11

10.Закон Ома для переменных токов.

Вышеприведённые соображения о свойствах электрической цепи при использовании источника (генератора) с переменной во времени ЭДС остаются справедливыми. Специальному рассмотрению подлежит лишь учёт специфических свойств потребителя, приводящих к разновремённости достижения напряжением и током своих максимальных значений, то есть учёта фазового сдвига.

Если ток является синусоидальным с циклической частотой  , а цепь содержит не только активные, но и реактивные компоненты (ёмкости, индуктивности), то закон Ома обобщается; величины, входящие в него, становятся комплексными:

где:

  • U = U0eiωt — напряжение или разность потенциалов,

  • I — сила тока,

  • Z = Reiδ — комплексное сопротивление (импеданс),

  • R = (Ra2 + Rr2)1/2 — полное сопротивление,

  • Rr = ωL − 1/(ωC) — реактивное сопротивление (разность индуктивного и емкостного),

  • Rа — активное (омическое) сопротивление, не зависящее от частоты,

  • δ = − arctg (Rr/Ra) — сдвиг фаз между напряжением и силой тока.

При этом переход от комплексных переменных в значениях тока и напряжения к действительным (измеряемым) значениям может быть произведён взятием действительной или мнимой части (но во всех элементах цепи одной и той же!) комплексных значений этих величин. Соответственно, обратный переход строится для, к примеру,  подбором такой   что   Тогда все значения токов и напряжений в схеме надо считать как 

Если ток изменяется во времени, но не является синусоидальным (и даже периодическим), то его можно представить как сумму синусоидальных Фурье-компонент. Для линейных цепей можно считать компоненты фурье-разложения тока действующими независимо.

Также необходимо отметить, что закон Ома является лишь простейшим приближением для описания зависимости тока от разности потенциалов и от сопротивления и для некоторых структур справедлив лишь в узком диапазоне значений. Для описания более сложных (нелинейных) систем, когда зависимостью сопротивления от силы тока нельзя пренебречь, принято обсуждать вольт-амперную характеристику. Отклонения от закона Ома наблюдаются также в случаях, когда скорость изменения электрического поля настолько велика, что нельзя пренебрегать инерционностью носителей заряда.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]