
- •1) Предмет геодезии и её связь с другими науками
- •2) Детальная разбивка круговых кривых способом прямоугольных координат
- •Способ прямоугольных координат от тангенсов.
- •Билет № 2
- •1) . Краткий исторический очерк развития российской геодезии
- •2) Нивелирование поверхности. Способы нивелирования поверхности.
- •Билет №4
- •1) Проектирование земной поверхности. Системы координат
- •1.5.2. Астрономические координаты (для геодезии)
- •Билет №5
- •2) Способ квадратов. Используют на открытой местности со слабо-выраженным рельефом. Является основным видом топографических съемок при изысканиях аэродромов.
- •Билет №6
- •Билет №7
- •Расчет разбивочных элементов
- •Билет №8
- •1) . Измерение горизонтальных углов
- •Билет№9
- •Билет №10
- •1) Поверки юстировки точность измерения углов
- •2.5.1.3. Поверка коллимационной ошибки
- •2.5.1.4. Поверка равенства подставок
- •Билет №11
- •3.2. Теоретическое обоснование
- •3.5.1.2. Нивелир н – 10л
- •3.5.1.3. Нивелирные рейки и порядок отсчитывания по ним
- •3.5.2.2. Поверка сетки нитей
- •3.5.2.3. Поверка главного условия
- •Билет №12
- •1) Геометрическое нивелирование
- •2) Генеральный план. Стройгенплан. Общие сведения.
- •1) Тригонометрическое нивелирование
- •2) Оси инженерных сооружений и их закрепления на плане.
- •Билет № 14
- •1) Гидростатическое и барометрическое нивелирование
- •2) Плановые и высотные государственные геодезические сети.
- •Билет №15
- •1) Виды топогроафических съемок
- •2) Геодезические знаки, реперы, марки.
- •Билет №16
- •2) Геодезические работы при устройстве котлованов. Общие сведения.
- •Билет №17
- •4. Вычисляют дирекционные углы всех сторон полигона по формуле:
- •2) Геодезическое обслуживание надземной части здания . . .
- •Билет №19
- •Билет №20
- •Билет №21
- •1) Обратная геодезическая задача
- •2) Исполнительные съемки. Общие сведения.
- •Билет №22
- •1) Мерные приборы. Компарирование.
- •2) Наблюдения за деформациями и смещениями геодезическими методами.
- •2. Назначение геодезических измерений.
- •Билет №23
- •1) Нивелирование трассы линейного сооружения
- •2) Топографические карты и планы. Масштабы. Определение уклонов и углов наклона по топографическим картам.
- •Билет №24
- •1) Полевое и камеральное трассирование. Разбивка ипкетажа
- •2) . Сближение меридианов и магнитное склонение.
- •Билет №25
- •1) Основные элементы круговой кривой. Расчет
- •2) Современные геодезические приборы
1.5.2. Астрономические координаты (для геодезии)
Астрономическая широта j и долгота l определяют положение точки земной поверхности относительно экваториальной плоскости и плоскости начального астрономического меридиана.
Астрономическая широта j – угол, образованный отвесной линией в данной точке и экваториальной плоскостью.
Астрономическая долгота l – двугранный угол между плоскостями астрономического меридиана данной точки и начального астрономического меридиана.
Плоскостью астрономического меридиана является плоскость, проходящая через отвесную линию в данной точке и параллельная оси вращения Земли.
Астрономическая широта j и долгота l определяются астрономическими наблюдениями.
Геодезические и астрономические координаты отличаются (имеют расхождение) из-за отклонения отвесной линии от нормали к поверхности эллипсоида. При составлении географических карт этим отклонением пренебрегают.
1.5.3. Географические координаты
Географические координаты – величины, обобщающие две системы координат: геодезическую и астрономическую, используют в тех случаях, когда отклонение отвесных линий от нормали к поверхности не учитывается (рис.9).
Географическая широта j – угол, образованный отвесной линией в данной точке и экваториальной плоскостью.
Географическая долгота l – двугранный угол между плоскостями меридиана данной точки с плоскостью начального меридиана.
1.5.5. Полярные координаты
При выполнении съемочных и разбивочных геодезических работ часто применяют полярную систему координат (рис.14). Она состоит из полюса О и полярной оси ОР, в качестве которых принимается прямая с известным началом и направлением.
Для определения положения точек в данной системе используют линейно-угловые координаты: угол β, отсчитываемый по часовой стрелке от полярной оси ОР до направления на горизонтальную проекцию точки А', и полярное расстояние r от полюса системы О до проекции А'.
2) Нивелирование поверхности создают для детализированного изображения рельефа местности на строй площадках больших сооружений, промплощадках горных компаний, на участках открытых горных работ, для проектирования осушительных и оросительных систем и т. д. В зависимости от нрава рельефа и ситуации местности, а также от площади нивелируемой поверхности используют разные методы нивелирования: по квадратам, параллельных линий, магистралей (полигонов) и др., из которых наибольшее распространение получил метод нивелирования по квадратам. Данный метод используют при топографической съемке открытых участков местности со размеренным рельефом в больших масштабах (1:500—1:5000) с малой (0,1—0,5 м) высотой сечения рельефа с целью составления проекта вертикальной планировки и подсчета размеров земельных работ. С учетом нрава рельефа, требуемой точности его изображения, трудности и назначения строящегося сооружения разбивают сети квадратов со сторонами от 10 до 100 м. При разбивке сетки квадратов поначалу традиционно строят внешний полигон в виде квадрата либо прямоугольника . Для этого вдоль границы снимаемого участка на местности закрепляют опорную линию АВ и на ней откладывают мерной лентой длины сторон квадратов (А-1, 1-2, ..., 5-В). Потом в точках А и В поочередно устанавливают теодолит и восставляют перпендикуляры АС и BD к полосы АВ. Для контроля измеряют длину полосы CD, которая не обязана различаться от длины полосы АВ наиболее чем на 1 : 2000 ее длины. На перпендикулярах и полосы CD также откладывают длины сторон квадратов. Вершины полигона ABDC и точки на его сторонах закрепляют грунтовыми реперами. Разбивка квадратов снутри полигона выполняется по створам линий 1—1, 2—2, ..., 5—5. Контроль разбивки выполняется вешением точек по перпендикулярным створам а—а, б—б, в—в. Вершины квадратов (пикеты) закрепляют колышками. При необходимости на сторонах квадратов в точках перегиба рельефа местности закрепляют плюсовые точки. При длинах сторон внешнего полигона до 300 м разбивку заполняющих квадратов комфортно делать длинноватыми тросами, размеченными через расстояния, равные длине стороны квадрата. Одновременно с разбивкой пикетов делается съемка ситуации линейными промерами от сторон квадратов до соответствующих точек контуров и местных предметов. Результаты съемки заносят в абрис, на котором также демонстрируют стрелками направление скатов. Перед началом нивелирования на листе плотной бумаги вычерчивают схему квадратов, которая является сразу и полевым журнальчиком нивелирования. Порядок нивелирования квадратов зависит от их размера и критерий местности.
В зависимости от назначения съемок и условий местности могут быть использованы следующие способы геометрического нивелирования поверхности:
1. Способ поперечников к магистральному ходу. Наиболее часто используют при съемке притрассовой полосы вдоль трасс автомобильных, каналов и других линейных объектов. Планово-высотным обоснованием в этом случае является трасса линейного объекта (т. е. теодолитно-нивелирный ход).
Поперечники обычно разбивают на пикетах и плюсах трассы линейного объекта, высоты которых уже определены в результате продольного 208 нивелирования в два нивелира по пикетажу трассы. Поскольку съемку ситуационных особенностей местности производят в ходе разбивки пикетажа, ситуационные точки при нивелировании поперечников не фиксируют.
2. Способ параллельных линий. Часто применяют на слабовсхолмленной местности при исполнительных съемках дорожных покрытий, искусственных покрытий взлетно-посадочных полос аэродромов, строительных площадок и т. д. В качестве планово-высотного обоснования используют взаимно перпендикулярные теодолитно-нивелирные прямолинейные ходы, прокладываемые вблизи границ снимаемого участка местности или по его середине.
Съемочные ходы прокладывают в виде линий, параллельных сторонам основного хода.