Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
билеты все.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
995.41 Кб
Скачать

Амфетамины:

  • ослабляют обратный захват DA и даже обращают работу белков-насосов;

  • активируют загрузку DA в везикулы (каждая везикула содержит теперь больше DA);

  • частично блокируют МАО.

При введении высоких доз действие амфетаминов начинает распространяться на систему NE.

В результате появляется бодрость, прилив сил, снимается утомление, голод. Амфетамины пыта-лись использовать для похудания; они были первыми спортивными допингами; сейчас это – «наркотики дискотек» и группа лекарственных препаратов (используются при тяжелых депрессиях).

Привыкание и зависимость: через 20-30 приемов; не дают реальной энергии, а лишь заставляют мозг расставаться с «неприкосновенными запасами» DA; быстро развиваются эндокринные нарушения, страдает сердечно-сосудистая система. Как допинги давно ушли в прошлое (им далеко до EPO – эритропоэтина, увеличиваю-щего в крови содержание эритроцитов…).

Инактивация DA: обратный захват с помощью белка-насоса и далее повторная загрузка в везикулу либо разрушение с помощью МАО (находится на мембране митохондрий).

Синтез серотонина (5-НТ) идет в 2 стадии:

1. Из пищевой аминокислоты триптофана образуется 5-гидрокситриптофан; фермент триптофангидроксилаза.

2. Из 5-гидрокситриптофана образуется 5-гидрокситриптамин (5-НТ; серотонин); фермент декарбоксилаза ароматических аминокислот.

Серотонин является тканевым гормоном (увеличивает тонус гладких мышечных клеток в стенках сосудов и ряда других внутренних органов). Кроме того, серотонин – медиатор ЦНС; вырабатывают нейроны ядер шва (верхне-центральная зона среднего мозга, моста и продолговатого мозга с переходом в спинной мозг); аксоны клеток ядер шва расходятся по всей ЦНС, образуя контакты обычного и варикозного типа.

Антидепрессанты – препараты, активирующие системы NE, DA и 5-НТ (NE и DA поднимают уровень положит. эмоций, а серотонин сдерживает отрицательные эмоции).

Механизм действия: блокаторы МАО и обратного захвата.

В случае МАО выделяют 2 подтипа фермента:

МАО-А – разрушает NE и 5-НТ;

МАО-Б – разрушает дофамин.

Ранее использовали неспецифические блокаторы МАО (ниаламид); теперь – более мягко действующие блокаторы МАО-А (пиразидол). Блокаторы МАО-Б (депренил) применяют при паркинсонизме.

На фоне блокаторов МАО может возникать «сырный синдром»: тирамин, которого много в сыре, бобовых, копченостях, не разрушается и оказывает NE-подобное действие (нервное возб-е, гипертония).

В случае обратного захвата белки-насосы для каждого из медиаторов хотя и похожи, но все же разные. Используют неспецифические блокаторы обратного захвата (амитриптилин) и наиболее мягко работающие блокаторы захвата 5-НТ (флуоксетин = прозак). Прозак: применение повышает уровень оптимизма и увереннос-ти в себе.

Синтез дофамина (DA):

Уже знакомая последовательность реакций:

  1. Тирозин превращается в L-дофа; фермент тирозин-гидроксилаза

  2. L-дофа дает дофамин (декарбоксилирование v )

  3. Дофамин превращается в NЕ и т.д.

Норадреналин (ne).

Как и к ацетилхолину, к NЕ существует два основных типа рецепторов (альфа- и бета-адренорецепторы). К рецепторам Ацх агонисты и антагонисты создала сама природа, они издавна известны человечеству.В случае NЕ потрудиться пришлось химикам; избирательные альфа-агонисты и антагонисты, а также бета-агонисты и антагонисты стали появляться лишь после 1948 г.

Норадреналин – образуется в результате цепи химических ре-акций из пищевой аминокислоты тирозина; характерный элемент структуры – ароматическое (бензольное) кольцо.

Синтез – в пресинаптическом окончании, после чего NЕ переносится внутрь везикул и готов к экзоцитозу.

Появление ПД запускает вход Са2+ и выброс NЕ в синаптическую щель, после чего он действует на рецепторы как пост-синаптической, так и пресинаптической мембраны.

NE в головном мозге: в передней верхней части моста («голубое пятно»), на дне ромбовидной ямки; всего несколько млн. клеток (< 1% нейронов ЦНС), однако их аксоны расхо-дятся по всему головному и спинному мозгу, влияя на многие функции.

Медиатор норадреналин относится к катехоламинам — производным аминокислоты тирозина. Тирозин — одна из незаменимых аминокислот, которые мы получаем только с пищей.

Синтез норадреналина осуществляется в пресинаптических окончаниях, затем он переносится в пустые везикулы и хранится до момента выброса. Выделяясь в синаптическую щель, норадреналин действует на постсинаптические рецепторы, которые неоднородны и подразделяются на два типа — альфа- и бета-адренорецепторы. Оба они являются метаботропными, но разница состоит в том, что альфа-адренорецепторы в качестве вторичных посредников используют инозитолтрифосфат (ИТФ), диацилглицерол (ДАТ) и ионы Са2+, а бета-адренорецепторы соединены с ферментом аденилатциклазой, продуцирующей циклический аденозинмонофосфат (цАМФ).

Норадренергические (вырабатывающие норадреналин в качестве медиатора) нейроны расположены в голубом пятне и межножковом ядре среднего мозга, их аксоны образуют чрезвычайно широкую сеть проекций, в результате чего соответствующие синапсы можно обнаружить в большой концентрации в разных отделах ЦНС от спинного до конечного мозга, в том числе в коре мозжечка и больших полушарий (содержат как

альфа-, так и бета-адренорецепторы).

Обе эти группы препаратов (препараты с нейролептическими свойствами, антидепрессанты.) способны влиять на активность норадренергической системы, но ситуация осложняется тем, что в регуляции уровня эмоций и двигательной активности, кроме норадреналина, участвуют и другие медиаторы, в частности, дофамин и серотонин.

Обратный захват норадреналина осуществляется особыми белками-насосами. Попав в пресинаптическое окончание, норадреналин может повторно «загружаться» в везикулы, но может и разлагаться с помощью фермента моноаминоксидазы (МАО). Инактивация происходит внутри митохондрий, на внутренней мембране которых располагается МАО. Чрезвычайно важно, что этот фермент осуществляет разложение и других моноаминов — дофамина и серотонина. Оказалось, что использование блокаторов МАО позволяет повысить активность всех трех медиаторных систем (антидепрессантные эффекты).

Дофамин. Дофамин относится к катехоламинам. Дофаминергические нейроны встречаются в трех отделах головного мозга: черной субстанции (ее компактной части), покрышке среднего мозга и в различных ядрах гипоталамуса. В периферической нервной системе его практически нет.

Синтез дофамина протекает так же, как и норадреналина, но в дофаминергических нейронах цепочка химических превращений тирозина останавливается на одно звено раньше. Далее происходит перенос медиатора в везикулы и выброс в синаптическую щель по мере надобности.

В норме инактивация дофамина осуществляется тем же способом, который описан для норадреналина (обратный захват, а затем повторная загрузка в везикулы либо разложение с помощью МАО). Отличие состоит в функции пресинаптических рецепторов. В случае дофамина их включение тормозит активность синапса, т. е. уменьшает дальнейший выброс медиатора. Этот механизм позволяет нервным клеткам экономно расходовать запасы дофамина, но подразумевается, что чувствительность пре- и постсинаптических рецепторов к дофамину тонко сбалансирована. Смещение этого

баланса, вероятно, является причиной некоторых видов шизофрении, при которых пресинаптические рецепторы «опаздывают» с торможением выброса медиатора, поэтому оказывается полезным введение специфических агонистов пресинаптических рецепторов (например, апоморфина в малых дозах).

Серотонин. Серотонин — медиатор, относящийся к группе моноаминов, к ней же принадлежат катехоламины и гистамин. Образуется серотонин в результате химического

преобразования аминокислоты триптофана. В ЦНС серотонин синтезируют в основном нейроны, находящиеся в ядрах шва; последние расположены вдоль средней линии продолговатого мозга, моста и среднего мозга. Синтез серотонина осуществляется преимущественно в пресинаптических окончаниях. Выделяясь в дальнейшем в синаптическую щель, серотонин связывается с соответствующими рецепторами, которых в настоящее время известно 3 типа. Сокращенно они называются 5HTj-, 5HT2- и 5НТ3-ре-

цепторы. Последний слабо представлен в ЦНС, поэтому подробнее остановимся только на свойствах рецепторов первого и второго типов.

5НТГ и 5НТ2-рецепторы являются метаботропными и сопряжены соответственно с аденилатциклазои и фосфолипазои С (ферментом, с помощью которого осуществляется синтез диацилглицерола и инозитолтрифосфата). 5НТ2-рецепторы более распространены на постсинаптических мембранах мозга, особенно высока их концентрация в лобной коре; несколько меньше 5НТ2-рецепторов в поясной извилине, гипоталамусе, миндалине. 5НТ,-рецепторы чаще являются пресинаптическими. Будучи более чувствительными к серотонину, чем 5НТ2-тип, они способны эффективно блокировать его выброс в синаптическую щель. Этот механизм в целом аналогичен механизму, описанному в случае дофамина. Кроме того, активация пресинаптических рецепторов снижает синтез серотонина.

Серотонин, как и катехоламины, возвращается в пресинаптическое окончание с помощью механизма обратного всасывания. Деградация медиатора идет с помощью все той же МАО. Ослабляя обратный захват либо блокируя МАО, можно достичь активации серотонинергических синапсов. При этом воздействие на МАО приведет к параллельной активации и катехоламинергических систем. Блокаторы МАО, усиливающие работу сразу трех медиаторов-моноаминов (серотонина, норадреналина и дофамина), образуют отдельное семейство психотропных препаратов — антидепрессантов.

25. Пути синтеза и инактивации в нервных клетках.

Дофамин – один из медиаторов нервной системы человека. Дофамин и серотонин: 1-2% – мотивационно-эмоциональная сфера.

Дофамин особенностями химического строения относят к моноаминам – производным аминокислот (пищевых), потерявших СО2 (декарбоксилирование).

Синтез дофамина.

1. Тирозин превращается в L-дофа; фермент тирозин-гидроксилаза

2. L-дофа дает дофамин (декарбоксилирование)

3. Дофамин превращается в NЕ и т.д.

На стадии дофамина реакция останавливается в нейронах:

А) черной субстанции среднего мозга

(аксоны идут в базальные ганглии)

Б) вентральной покрышки среднего

мозга (аксоны идут в кору б. п/ш.)

В) гипоталамуса (короткие аксоны,

локальные влияния и нейроэндокринная функция).

Жизненный цикл DA:

1. Синтез в пресинаптическом окончании и экзоцитоз при приходе ПД

2. Действие на постсинаптические рецепторы, связанные с G-белками.

3. Действие на пресинаптические рецепторы: аутоторможение экзоцитоза (как и в случае NE).

4. Инактивация: обратный захват и последующее повторное использование либо разрушение с помощью МАО.

(МАО – фермент моноаминоксидаза; расщепляет самые разные моноамины, в т.ч. медиаторы и гормоны.)

Рецепторы к DA:

выделяют 5 типов (D1, …, D5);метаботропные, действуют через аденилатциклазу (АЦ): активируют ее либо тормозят.

Гипоталамус.

Гипоталамус: главный центр эндокринной и вегетативной регуляции, а также биологических потребностей и связанных с ними эмоций (голод и жажда, страх, агрессия, половая и родит. мотивации).

Рефлекторно-эндокринная «дуга»: сосание тормозит выработку DA в гипоталамусе, акти-вируя выработку пролактина и дальнейшую лактацию.

Дофамин оказывает тормозящее действие на секрецию гипофизом пролактина.

Пролактин – гормон, активирующий лактацию, а также родительское поведение (как у ♀, так и у ♂); тормозит половую мотивацию, овуляцию.

D2-агонисты (бромокриптин) используются для прекращения лактации при воспалении молочных желез.

Вегетативные эффекты DA, выделяемого нейронами гипоталамуса, имеют симпатическую направленность (задняя часть гипоталамуса); при периферическом введении DA

не проходит ГЭБ и, постепенно превращаясь в NE и адреналин, работает как относительно мягкий кардиостимулятор.

Действие DA на центры одних биологических потребностей имеет тормозную направленность (голод, страх и тревожность, родительская мотивация), на центры других – активирующую (половое поведение, в некоторых случаях – агрессия).

DA – гормон «любви» и агрессии против чужаков у моногамных полевок.