Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
билеты все.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
995.41 Кб
Скачать

47. Парасимпатическая нервная система: функции, анатомическая организация, особенности работы синапсов, примеры влияния на внутренние органы.

Парасимп. система: ганглии рядом с органами или в стенках органа.

Парасимпатическая часть иннервирует только внутренние органы, которые, таким образом, имеют двойную вегетативную иннервацию — и симпатическую, и парасимпатическую. Все остальные органы и ткани получают только симпатическую вегетативную иннервацию.

У парасимпатической части нервной системы центральный отдел расположен в стволе головного мозга в виде ядер черепных нервов (глазодвигательного, лицевого, языкоглоточного, блуждающего) и в боковых рогах крестцовых сегментов спинного мозга (с II по IV).

Периферический отдел парасимпатической части нервной системы представлен нервными волокнами в составе черепных и тазовых нервов, нервными узлами, расположенными в стенках внутренних органов или в непосредственной близости от органов, нервными окончаниями парасимпатической природы. Ко многим внутренним органам парасимпатические волокна идут в составе блуждающих нервов (X пара черепных нервов). Этот нерв иннервирует почти все органы грудной и брюшной полостей. Половые органы, мочевой пузырь и конечная часть толстой кишки получают парасимпатическую иннервацию из крестцового отдела спинного мозга.

Медиатором, образующимся в окончаниях парасимпатических нервных волокон, является ацетилхолин, который уменьшает ритм и силу сердечных сокращений, суживает

просвет бронхов, усиливает желудочно-кишечную перистальтику, активизирует секрецию желез желудка, кишечника, поджелудочной железы, суживает зрачок.

Парасимпатич. НС в ос-новном лишь урежает со-кращения сердца (вплоть до полной остановки).

48. Исследование вегетативных и соматических реакций, вызванных локальным электрическим раздражением различных областей гипоталамуса, позволило В. Гессу (1954) выделить в этом отделе мозгадве функционально дифференцированные зоны. Раздражение одной из них — задней и латеральной областей гипоталамуса — вызывает типичные симпатические эффекты', расширение зрачков, подъем кровяного давления, увеличение частоты сердечных сокращений, прекращение перистальтики кишечника и т. д. Разрушение данной зоны, напротив, приводило к длительному снижению тонуса симпатической нервной системы и контрастному изменению всех перечисленных выше показателей. Гесс назвал область заднего гипоталамуса эрготропной и допустил, что здесь локализованы высшие центры симпатической нервной системы.

Другая зона, охватывающая предоптическую и переднюю области гипоталамуса, получила название трофотропной, так как при ее раздражении наблюдались все признаки общего возбуждения парасимпатической нервной системы, сопровождавшиеся реакциями, направленными на восстановление и сохранение резервов организма.

Однако дальнейшие исследования показали, что гипотеза о наличии двух антагонистических зон гипоталамуса является слишком обобщенной и не может объяснить различные функции этого Отдела мозга. Так были получены факты, противоречащие узкой локализации симпатических и парасимпатических центров в гипоталамусе. Оказалось, что сосудосуживающий эффект может быть получен при раздражении и задней, и передней областей гипоталамуса и, следовательно, симпатические нейроны присутствуют в этих обеих областях. Равным образом клетки, которые активируют постганглионарные холинергические сосудорасширяющие нейроны, тоже довольно широко распространены в пределах гипоталамуса (см. разд. 5.5.3).

Детальное исследование изменений в сердечно—сосудистой системе показало, что локальное раздражение определенных отделов гипоталамуса сопровождается диаметрально противоположными изменениями кровотока в «ядре» и «оболочке» тела. Например, при увеличении кровотока в скелетных мышцах может наблюдаться его снижение в сосудах кожи и органах брюшной полости. При раздражении гипоталамуса возможны не только вегетативные реакции, но и целый ряд соматических эффектов, таких как изменение позы или увеличение частоты дыхания.

Эти факты свидетельствуют о том, что гипоталамус вряд ли является статическим и локальным объединением эрготропной и трофотропной зон. Предпочтительнее представлять себе гипоталамус как важный интегративный центр автономных, соматических и эндокринных функций, который отвечает за реализацию сложных гомеостатических реакций и входит в иерархически организованную систему отделов головного мозга, регулирующих висцеральные функции.

Системность гомеостатических реакций можно продемонстрировать опять—таки на примере регуляции гемодинамики. Известно, что саморегуляция сосудистого тонуса осуществляется за счет функции сосудистого центра продолговатого мозга, который работает как следящая система. Этот уровень интеграции достаточен для осуществления простых рефлекторных реакций в ответ на информацию от баро— и механорецепторов сосудистого русла. Вместе с тем более сложные вазомоторные реакции, связанные, например, с терморегуляцией или локомоторными актами, реализуются с участием гипоталамуса, который связан с сосудистым центром и с сосудодвигательными нейронами спинного мозга.

В то же время сам гипоталамус имеет связи с корой головного мозга, представляющей еще более высокий уровень интеграции. Такие связи обнаружены, например, между корой и латеральной областью гипоталамуса, отвечающей за приспособительные реакции сосудистой системы при физической нагрузке. Очевидно, по этим путям распространяются модулирующие влияния коры на деятельность гипоталамуса.

Таким образом, в регуляцию вегетативных реакций вовлекается целая система центров, представленных на всех уровнях головного мозга. Гипоталамус является одним из уровней данной системы, и это во многом определяет сложность и адаптивный характер регулируемых им вегетативных реакций.

49. Все процессы жизнедеятельности организма строго согласованы между собой по скорости, времени и месту протекания. В организме человека эту согласованность осуществляют внутриклеточные и меж¬клеточные механизмы регуляции, важнейшую роль в которых иг¬рают гормоны и нейромедиаторы. Специфические регуляторы, ко¬торые секретируются эндокринными железами в кровь или лимфу, а затем попадают на клетки-мишени, называют гормонами. Ве¬щества, которые выделяются из пресинаптических нервных окон¬чаний в синаптическую щель и вызывают биологический эффект, связываясь с рецепторами постсинаптической мембраны, называют нейромедиаторами.

Функциональная активность эндокринной железы может регу¬лироваться «субстратом», на который направлено действие гормона. Так, глюкоза стимулирует секрецию инсулина из β-клеток панк¬реатических островков (островки Лангерганса), а инсулин понижает концентрацию глюкозы в крови, активируя ее транспорт в мышцы и печень. Это происходит следующим образом. Глюкоза входит в β-клетки поджелудочной железы через переносчик глюкозы и сразу же фосфорилируется глюкокиназой, после чего вовлекается в гли¬колиз. Образующийся при этом АТФ ингибирует калиевые каналы, вследствие чего снижается мембранный потенциал β-клеток и ак-тивируются потенциалзависимые кальциевые каналы. Входящий в β-клетку кальций стимулирует слияние везикул, содержащих ин¬сулин, с плазматической мембраной и секрецию инсулина. Инсулин активирует перенос глюкозы в печень, сердце и скелетные мышцы, вследствие чего уровень глюкозы в крови снижается, замедляется ее вход в β-клетки и уменьшается секреция инсулина (рис. 5.1).

Такой же механизм лежит в основе секреции паратгормона (паратиреоидный гормон, паратирин) и кальцитонина. Оба гормона влияют на концентрацию кальция и фосфатов в крови. Паратирео¬идный гормон вызывает выход минеральных веществ из кости и стимулирует реабсорбцию кальция в почках и кишечнике, в ре¬зультате чего возрастает концентрация кальция в плазме крови. Кальцитонин, напротив, стимулирует поступление кальция и фос¬фатов в костную ткань, в результате чего концентрация минераль¬ных веществ в крови снижается. При высокой концентрации кальция в крови подавляется секреция паратиреоидного гормона и стимули¬руется секреция кальцитонина. В случае снижения концентрации кальция в крови секреция паратиреоидного гормона усиливается, а кальцитонина — ослабляется.

Такая регуляция постоянства внутренней среды организма, про¬исходящая по принципу отрицательной обратной связи, очень эффективна для поддержания гомеостаза, однако не может вы¬полнять все задачи адаптации организма. Например, кора надпо¬чечников продуцирует стероидные гормоны в ответ на голод, болезнь, эмоциональное возбуждение и т. п. Чтобы эндокринная система могла «отвечать» на свет, звуки, запахи, эмоции и т. д., должна существовать связь между эндокринными железами и нер¬вной системой.

Основные связи между нервной и эндокринной системами регу¬ляции осуществляются посредством взаимодействия гипоталамуса и гипофиза (рис. 5.2). Нервные импульсы, приходящие в гипоталамус, активируют секрецию так называемых рилизинг-факторов (либеринов и статинов): тиреолиберина, соматолиберина, пролактолиберина, гонадолиберина и кортиколиберина, а также соматостатина и пролактостатина. Мишенью для либеринов и статинов, секретируемых гипоталамусом, является гипофиз. Каждый из либеринов взаимодействует с определенной популяцией клеток гипо¬физа и вызывает в них синтез соответствующих тропинов: тиреотропина, соматотропного гормона (соматотропин — гормон рос¬та), пролактина, гонадотропного гормона, (гонадотропины — лютеинизирующий и фолликулостимулирующий), а также адренокортикотропного гормона (АКТГ, кортикотропин). Статины оказы¬вают на гипофиз влияние, противоположное действию либеринов, — подавляют секрецию тропинов. Тропины, секретируемые гипофизом, поступают в общий кровоток и, попадая на соответствующие железы, активируют в них секреторные процессы.

Молекула соматолиберина является самой крупной среди либе¬ринов, она состоит из 15 аминокислотных остатков; самая маленькая молекула — трипептид — у тиреолиберина. Молекулы тропинов, образующихся в гипофизе, содержат от 13 до 198 аминокислотных остатков.

Регуляция деятельности гипофиза и гипоталамуса, кроме сигна¬лов, идущих «сверху вниз», осуществляется гормонами «исполни¬тельных» желез (рис. 5.3). Эти «обратные» сигналы поступают в гипоталамус и затем передаются в гипофиз, что приводит к изме¬нению секреции соответствующих тропинов. После удаления или атрофии эндокринной железы стимулируется секреция соответству¬ющего тропного гормона; при гиперфункции железы секреция со-ответствующего тропина подавляется.

Обратные связи не только позволяют регулировать концентрацию гормонов в крови, но и участвуют в дифференцировке гипоталамуса в онтогенезе. Образование половых гормонов в женском организме происходит циклически, что объясняется циклической секрецией гонадотропных гормонов. Синтез этих гормонов контролируется ги¬поталамусом, образующим рилизинг-фактор этих тропинов (гонадолиберин). Если самке пересадить гипофиз самца, то пересаженный гипофиз начинает функционировать циклично. Половая дифференцировка гипоталамуса происходит под действием андрогенов. Если самца лишить половых желез, продуцирующих андрогены, то ги¬поталамус будет дифференцироваться по женскому типу.

В железах внутренней секреции иннервированы, как правило, только сосуды, а эндокринные клетки изменяют свою биосинтети¬ческую и секреторную активность лишь под действием метаболитов, кофакторов и гормонов, причем не только гипофизарных. Так, ангиотензин II стимулирует синтез и секрецию альдостерона. От¬метим также, что некоторые гормоны гипоталамуса и гипофиза могут образовываться не только в этих тканях. Например, соматостатин (гормон гипоталамуса, ингибирующий образование и секре¬цию гормона роста) обнаружен также в поджелудочной железе, где он подавляет секрецию инсулина и глюкагона.

Большинство нервных и гуморальных путей регуляции сходится на уровне гипоталамуса и благодаря этому в организме образуется единая нейроэндокринная регуляторная система. К клеткам гипо¬таламуса подходят аксоны нейронов, расположенных в коре больших полушарий и подкорковых образованиях. Эти аксоны секретируют различные нейромедиаторы, оказывающие на секреторную актив¬ность гипоталамуса как активирующее, так и тормозное влияние. Поступающие из мозга нервные импульсы гипоталамус «превращает» в эндокринные стимулы, которые могут быть усилены или ослаблены в зависимости от гуморальных сигналов, поступающих в гипоталамус от желез и тканей, подчиненных ему.

Тропины, образующиеся в гипофизе, не только регулируют де¬ятельность подчиненных желез, но и выполняют самостоятельные эндокринные функции. Например, пролактин оказывает лактогенное действие, а также тормозит процессы дифференцировки клеток, повышает чувствительность половых желез к гонадотропинам, сти¬мулирует родительский инстинкт. Кортикотропин является не только стимулятором стероцдогенеза, но и активатором липолиза в жировой ткани, а также важнейшим участником процесса превращения в мозге кратковременной памяти в долговременную. Гормон роста может стимулировать активность иммунной системы, обмен липидов, Сахаров и т. д.

В задней доле гипофиза (нейрогипофиз) депонируются антиди¬уретический гормон (вазопрессин) и окситоцин (см. рис. 5.3). Первый вызывает задержку воды в организме и повышает тонус сосудов, второй стимулирует сокращение матки при родах и секрецию молока. Оба гормона синтезируются в гипоталамусе, затем транспортируются по аксонам в заднюю долю гипофиза, где депонируются и потом секретируются в кровь.

Характер процессов, протекающих в ЦНС, во многом определя¬ется состоянием эндокринной регуляции. Так, андрогены и эстрогены формируют половой инстинкт, многие поведенческие реакции. Оче¬видно, что нейроны, точно так же как и другие клетки нашего организма, находятся под контролем гуморальной системы регуляции. Нервная система, эволюционно более поздняя, имеет как уп¬равляющие, так и подчиненные связи с эндокринной системой. Эти две регуляторные системы дополняют друг друга, образуют функ¬ционально единый механизм, что обеспечивает высокую эффектив¬ность нейрогуморальной регуляции, ставит ее во главе систем, со¬гласующих все процессы жизнедеятельности в многоклеточном ор¬ганизме.

50. Гипоталамо-гипофизарная система — морфофункциональное объединение структур гипоталамуса и гипофиза, принимающих участие в регуляции основных вегетативных функций организма. Различные рилизинг-гормоны, вырабатываемые гипоталамусом (см. Гипоталамические нейрогормоны) оказывают прямое стимулирующее или тормозящее действие на секрецию гипофизарных гормонов. При этом между гипоталамусом и гипофизом существуют и обратные связи, с помощью которых регулируется синтез и секреция их гормонов. Принцип обратной связи здесь выражается в том, что при увеличении продукции железами внутренней секреции своих гормонов уменьшается секреция гормонов гипоталамуса (см. Нейрогуморальная регуляция функций). Выделение гормонов гипофиза приводит к изменению функции эндокринных желез; продукты их деятельности с током крови попадают в гипоталамус и, в свою очередь, влияют на его функции.

Главными структурными и функциональными компонентами гипоталамо-гипофизарная система являются нервные клетки двух типов — нейросекреторные, вырабатывающие пептидные гормоны вазопрессин и окситоцин, и клетки, главным продуктом которых являются моноамины (моноаминергические нейроны). Пептидергические клетки формируют крупные ядра — супраоптическое, паравентрикулярное и заднее. Нейросекрет, вырабатываемый внутри этих клеток, с током нейроплазмы попадает в нервные окончания нервных отростков. Основная масса веществ поступает в заднюю долю гипофиза, где нервные окончания аксонов нейросекреторных клеток тесно контактируют с капиллярами, и переходит в кровь. В медиабазальном отделе гипоталамуса расположена группа нечетко оформленных ядер, клетки которых способны продуцировать гипоталамические нейрогормоны. Секреция этих гормонов регулируется соотношением концентраций норадреналина, ацетилхолина и серотонина в гипоталамусе и отражает функциональное состояние висцеральных органов и внутренней среды организма. По мнению многих исследователей, в составе гипоталамо-гипофизарной системыцелесообразно выделить гипоталамо-аденогипофизарную и гипоталамо-нейрогипофизарную системы. В первой осуществляется синтез гипоталамических нейрогормонов (рилизинг-гормонов), тормозящих или стимулирующих секрецию многих гипофизарных гормонов, во второй — синтез вазопрессина (антидиуретического гормона) и окситоцина. Оба эти гормона, хотя и синтезируются в гипоталамусе, но накапливаются в нейрогипофизе. Помимо антидиуретического эффекта, вазопрессин стимулирует синтез гипофизарного адренокортикотропного гормона (АКТГ) секрецию 17-кетостероидов. Окситоцин влияет на активность гладкой мускулатуры матки, усиливает родовую деятельность, участвует в регуляции лактации. Ряд гормонов передней доли гипофиза получил название тропных. Это — тиреотропный гормон, АКТГ, соматотропный гормон, или гормон роста, фолликулостимулирующий гормон и др. В промежуточной доле гипофиза синтезируется меланоцитостимулирующий гормон. В задней доле накапливаются вазопрессин и окситоцин.

В 70-х гг. было установлено, что в тканях гипофиза осуществляется синтез ряда биологически активных веществ пептидной природы, которые позже отнесли к группе регуляторных пептидов. Выяснилось, что у многих из этих веществ, в частности эндорфинов, энкефалинов, липотропного гормона и даже АКТГ, один общий предшественник — высокомолекулярный белок проопиомеланокортин. Физиологические эффекты действия регуляторных пептидов многообразны. С одной стороны, они обладают самостоятельным влиянием на многие функции организма (например, на обучение, память, поведенческие реакции), с другой стороны, активно участвуют в регуляции деятельности самой гипоталамо-гипофизарной системы, влияя на гипоталамус, а через аденогипофиз — на многие стороны вегетативной деятельности организма (снимают ощущение боли, вызывают или уменьшают чувство голода или жажды, влияют на перистальтику кишечника и т.д.). Наконец, эти вещества оказывают определенный эффект на обменные процессы (водно-солевой, углеводный, жировой). Т.о., гипофиз, обладая самостоятельным спектром действия и тесно взаимодействуя с гипоталамусом, участвует в объединении всей эндокринной системы и регуляции процессов поддержания постоянства внутренней среды организма на всех уровнях его жизнедеятельности — от метаболического до поведенческого. Особенно ярко значение комплекса гипоталамус — гипофиз для жизнедеятельности организма проявляется при дифференцировке патологического процесса в рамках гипоталамо-гипофизарной системы например, в результате полного или частичного разрушения структур переднего отдела гипофиза, а также повреждения центров гипоталамуса, секретирующих рилизинг-гормоны, развиваются симптомы недостаточности аденогипофиза, характеризующиеся сниженной секрецией гормона роста, пролактина, других гормонов. Клинически это может выражаться в гипофизарном нанизме, гипоталамо-гипофизарной кахексии, неврогенной анорексии и т.д. (см. Гипоталамо-гипофизарная недостаточность). Недостаток синтеза или секреции вазопрессина может сопровождаться возникновением синдрома несахарного диабета, основной причиной которого является поражение гипоталамо-гипофизарного тракта, задней доли гипофиза или супраоптического и паравентрикулярного ядер гипоталамуса. Аналогичные проявления сопровождают гипоталамический синдром.

51.

. Гипоталамус как эндокринный центр: реакция на концентрацию гормонов в крови; выделение либеринов и статинов, конкретные примеры их функций.

---------------------------------------------------------------------------------------------------------------------

Гипоталамус является главным центром эндокринной и вегетативной регуляции, а также главным центром биологических потребностей (и связанных с ними эмоций).

Ядра, регулирующие деятельность эндокринной системы: прежде всего, это паравентрикулярное и супраоптическое.

Эти ядра содержат нейроэндокринные клетки, аксоны которых идут в заднюю долю гипофиза и здесь выбрасывают гормоны в кровь. Другие нейроны, расположенные в основном в средней части гипоталамуса(«серый бугор»), выделяют в сосудистое сплетение гормоны, регулирующие работу передней доли гипофиза.

Большинство гормонов гипоталамуса и гипофиза – белковые и пептидные молекулы. В гипоталамусе они синтезируются в телах нейросекреторных клеток (вырезаются из белков-предшественников), загружаются в везикулы и переносятся по аксонам к месту экзоцитоза. Здесь гормоны выделяются в межклеточную среду с наружной стороны покровных клеток стенки капилляров, путём диффузии попадают в кровь и с кровью доставляются к клеткам-мишеням.

Действие гормонов на клетки-мишени развивается обычно теми же путями, что и в случае медиаторов: гормон действует на специфические рецепторы, запуская (через G-белки) синтез вторичных посредников, которые влияют на активность белков-насосов, ферментов, включают и выключают гены (на уровне ДНК) и т.д.

В ряде случаев гормон действует на клетки другой эндокринной железы, управляя её активностью («тропные гормоны», характерны для передней доли гипофиза).

Рецепторы гормонов имеются и на нервных клетках, благодаря чему эндокринная и нервная системы тесно взаимодействуют.

Экзоцитоз зависит от ПД, приходящих по аксону.

Гормоны, которые синтезируются в гипоталамусе(парвентрикулярное и супраоптическое ядра) и выбрасываются в кровь в задней доле гипофиза:

Это пептиды

• вазопрессин (антидиуре-тический гормон – ADH; влияет на почки)

Основной эффект вазопрессина: усиление обратного всасывания воды в почках (точнее, в нефронах; анти-диурез). Кроме того, он сужает сосуды («вазопрессор»).

В ЦНС вазопрессин и его фрагменты в очень низких дозах улучшают обучение и память (перспективные ноотропы).

Вазопрессин выделяется при повышении концентрации NaCl в крови: сигнал для почек «экономить воду»; параллельно возникает чувство жажды.

и

• окситоцин (матка, молочная железа).

Главные эффекты окситоцина:

запуск сокращений гладкомышечных клеток матки (роды) и протоков молочной железы (лактация; не путать с действием пролактина, усиливающим образование молока).

В ЦНС окситоцин и его фрагменты противодействуют эффектам вазопрессина, ухудшая обучение и память.

Как и пролактин, окситоцин выделяется в ходе акта сосания (при механической стимуляции соска; нервно-эндокринная дуга).

Переходим к гормонам передней доли гипофиза. Их существенно больше; это уже знакомые нам пролактин и опиоидные пептиды (эндорфины; регуляция уровня болевой чувствительности).

Кроме того, в передняя доля гипофиза вырабатывает тропные гормоны:

тиреотропный (тиреостимулирующий – TSН; влияет на щитовидную железу);

адренокортикотропный (АСТН; влияет на кору надпочечников);

FSH и LH влияют на половые железы мужчин и женщин;

гормон роста (соматотропный) – на рост тела, его общий размер.

 Выброс каждого из гормонов передней доли гипофиза регулируется гормонами гипоталамуса («рилизинг»-факторы), которые могут активировать секрецию гипофиза (либерины) либо

тормозить ее (статины). Так, дофамин является статином для пролактина и некоторых тропных гормонов.

 Статины и либерины выделяются в кровь нейроэндокринными клетками серого бугра, измеряющими содержание в крови «конечного» гормона (тироксина, половых гормонов и др.).

Избыток конечного гормона ведет к выбросу статина и снижению секреции гипофизом тропного гормона. Если конечного гормона в крови мало, то усиливается выброс соответствующего либерина (и тропного гормона).

Наличие таких отрицательных обратных связей позволяет поддерживать стабильное содержание в крови многих важнейших гормонов.

• Начнем со щитовидной железы. Она выделяет йодсодержащие гормоны тироксины, усиливающие обмен веществ (образование энергии) во всех клетках организма, в т.ч. в мозге.

Выделение тироксинов (Т4 и Т3) усиливает тиреотропный гормон передней доли гипофиза (TSH).

Гипоталамус, измеряя концентрацию тироксинов в крови, усиливает выделение либо статина (его роль играет дофамин) либо либерина (тиролиберина, TRH; является также либерином пролактина).Тиролиберин активирует выброс TSH.

Опасен как дефицит, так и избыток тироксинов в организме.

При дефиците (например, из-за нехватки йода в пище) – снижение обмена веществ, вялость, депрессии («микседема»); у новорожденных – оставание умственного развития.

При избытке – нервозность, бессонница, повышенный аппетит и худоба, гиперактивность симпатической НС, «выпученные» глаза.

Причиной в обоих случаях могут быть аутоиммунные нарушения.

• Тиролиберин (трипептид Glu-His-Pro) значимо влияет на работу ЦНС.

Он «дополняет» действие тироксинов: увеличивает уровень бодрствования, оказывает антидепрессантное действие, усиливает работу дыхательного центра

(в клинике: введение недоношенным детям).

• Соматотропный гормон (гормон роста – GH).

Как тропный гормон, активирует выделение печенью IGF-1 (иммуно-подобного фактора роста) и совместно с ним определяет рост скелета, мышц и конечный рост (размер тела) человека.

Гипоталамус оценивает концентрацию гормона роста и IGF-1, изменяя баланс между выделением соответствующих статина (соматостатина) и либерина (соматолиберина – GHRH = соматотропин-рилизинг фактор).

Нарушение работы этой системы ведет к карликовости; избыточная активность – к гигантизму.

Акромегалия – результат резкого увеличения продукции соматотропного гормона в зрелом возрасте (лишь часть органов способна продолжать рост: гипертрофия сердца, хрящевых тканей и др.).

 Влияния на ЦНС соматостатина: снижение пищевой мотивации, уровня эмоциональности и болевой чувствительности, небольшое снижение уровня бодрствования.

Соматостатин оказывает тормозящее действие на ЖКТ, подавляет активность многих других внутренних органов («всеобщий ингибитор»).