Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
билеты все.docx
Скачиваний:
0
Добавлен:
01.02.2020
Размер:
995.41 Кб
Скачать

Деятельность нервной системы носит рефлекторный характер. Рефлексом называется ответная реакция организма на раздражение, осуществляемая центральной нервной системой. Путь, по которому нервное возбуждение передается при рефлексе, является рефлекторной дугой. Рефлекторная дуга включает следующие отделы: рецепто-ры, афферентные (чувствительные) нервные волокна, участок цен-тральной нервной системы, эфферентные (двигательные) нервные волокна, рабочий орган. В рефлекторной дуге нервный импульс проводится в одном направлении — от афферентного нейрона к эф-ферентному.

Различают простые и сложные рефлекторные дуги. Простая рефлекторная дуга состоит из чувствительного, двигательного и одного вставочного нейронов. Рецептор, воспринимающий раздражение, передает нервный импульс к телу первого нейрона (афферентного), который находится в спинномозговом узле или чувствительном узле черепного нерва. Нервный импульс следует в спинной (серое вещество) или головной (ядра головного мозга) мозг и образует синапс с телом вставочного нейрона, который контактирует с эфферентным нейроном. Аксон этого нейрона выходит из спинного или головного мозга в составе передних (двигательных) корешков спинномозгового или черепного нервов и направляется к рабочему органу. В сложной рефлекторной дуге между афферентными и эфферентными нейронами располагаются два и более вставочных нейрона.

  1. 2. Белки-насосы: разнообразие и функции (транспорт ионов и медиаторов). Вещества, блокирующие белки-насосы; конкретные примеры последствий их применения.

1. «Чаша» белка встроена в мембрану клетки и открыта, например, в сторону внешней среды;

происходит присоединение лиганда.

2. Изменение пространственной конфигурации белка-насоса (как правило, требует затрат энергии АТФ; перенос лиганда не зависит от разности концентраций).

3. Белок-насос открывается в сторону цитоплазмы, высвобождая лиганд; затем – возвращение белка-насоса в исходную конфигурацию.

Примеры:

Инактивация Ацх

И нактивация Ацх происходит с помощью фермента ацетилхолинэстеразы.

Ацх-эстераза расположена на постсинаптической мембране и в синаптической щели. Она очень быстро «разрывает» Ацх на холин и остаток уксусной кислоты (ацетат). На следующем шаге холин пе-реносится с помощью особого белка-насоса обратно в преси-наптическое окончание и вновь используется для синтеза Ацх.

Натрий-калиевая АТФ-аза (Na+, К+-насос).

Э то крупный белок (около 1000 аминокислот), встроенный в мембрану, имеет на внутренней поверхности места связывания для Na+ и АТФ, а на наружной поверхности — для К+ (рис. 3.6).

На первой стадии цикла Na+, К+-насос захватывает из цитоплазмы три иона Na+ и молекулу АТФ, затем, используя энергию распада АТФ, молекула насоса меняет свою пространственную конфигурацию, ионы Na+ оказываются снаружи клетки и высвобождаются в межклеточную среду. Насос захватывает два иона К+ и возвращается к исходной конфигурации. В результате ионы К+ переходят в цитоплазму, а насос готов к новому циклу. Процесс переноса в клетку ионов К+ требует затраты энергии, получаемой в результате распада АТФ на АДФ и фосфорную кислоту (Ф). Скорость этого процесса может быть очень большой — до 600 ионов Na+ в секунду. В реальных нейронах она определяется доступностью внутриклеточного Na+ и резко возрастает

при его проникновении извне. При отсутствии любого из двух типов ионов работа насоса останавливается. Специфическим ядом, блокирующим деятельность Na+, К+-насоса, является

токсин растительного происхождения строфантин, присоединяющийся к месту связывания К+

------

Используют неспецифические блокаторы обратного захвата (амитриптилин) и наиболее мягко работающие блокаторы захвата 5-НТ (флуоксетин = прозак).

Прозак: применение повышает уровень оптимизма и уверенности в себе.

Антидепрессанты – препараты, активи-рующие системы NE, DA и 5-НТ (NE и DA поднимают уровень положит. эмоций, а серотонин сдержи-вает отрицательные эмоции).

Механизм действия: блокаторы МАО и обратного захвата.

Амфетамины:

  • ослабляют обратный захват DA и даже обращают работу белков-насосов;

  • активируют загрузку DA в везикулы (каждая везикула содержит теперь больше DA);

  • частично блокируют МАО.

При введении высоких доз действие амфетаминов начинает распространяться на систему NE

В результате появляется бодрость, прилив сил, снимается утомление, голод. Амфетамины пытались использовать для похудания; они были первыми спортивными допингами; сейчас это – «наркотики дискотек» и группа лекарственных препаратов (используются при тяжелых депрессиях).

3. Постоянно открытые и электрочувствительные ионные каналы: сравнение свойств, разнообразие, функции в синапсах, нервных и мышечных клетках.

---------------------------------------------------------------------------------------------------------------------

Сигнал по мембране нейрона передаётся в виде коротких электрических импульсов – потенциалов действия (ПД). Этот процесс можно сравнить с передачей информации с помощью включения и выключения фонарика (ПД= «вспышка света»).

Но для того, чтобы фонарик работал, нужна батарейка – источник электрической энергии. В случае нейрона таким источником является постоянный внутриклеточный заряд – потенциал покоя (ПП).

 Потенциал покоя нейрона – его постоянный отрицательный заряд, равный в среднем –70 мВ. Измерить ПП можно с помощью тончайшей, особым образом вытянутой стеклянной трубочки-микроэлектрода. Его кончик имеет диаметр <1 мкм, что позволяет практически без повреждения мембрану клетки. Микроэлектрод (в т.ч. канал внутри кончика) заполнен раствором соли, проводящим электрический ток. Это позволяет оценить, сравнить заряд цитоплазмы нейрона с зарядом межклеточной среды.

 Наличие ПП – результат жизнедеятельности нейрона, совместного функционирования всех биополимеров и органоидов клетки; погибший нейрон быстро теряет ПП. Первопричина ПП – разность концентраций ионов K+ и Na+ внутри и снаружи нейрона. Эту разность создаёт работа особого белка-насоса Na+-K+-АТФазы (Na+-K+-насоса).

Na+-K+-АТФаза обменивает находящиеся внутри клетки ионы Na+ на захваченные в межклеточной среде ионы K+, затрачивая значительное количество АТФ.

В основе этих процессов – открывание и закрывание электрочувствительных

Na+- и К+-каналов. Эти каналы имеют створки, реагирующие на изменение заряда внутри

нейрона и открывающиеся, если этот заряд становится выше -50 мВ.

Если заряд внутри нейрона вновь ниже -50 мВ – створка закрывается, т.к. положительные заряды, расположенные на ней, притягиваются к отрицательно заряженным ионам цитоплазмы. Положительные заряды створки – это заряды аминокислот, входящих в состав соответствующей молекулярной петли белка-канала.

Открытие электрочувствительного Na+-канала «разрешает» вход Na+ в клетку. Открытие электрочувствительного К+-канала «разрешает» выход К+ из клетки.Na+-каналы открываются очень быстро после стимула и самопроизвольно закрываются примерно через 0.5 мс.К+-каналы открываются медленно – в течение примерно 0.5 мс после стимула; закрываются они в большинстве своем к моменту снижения заряда нейрона до уровня ПП. Именно разная скорость открытия Na+-каналов и К+-каналов позволяет возникнуть сначала восходящей, а

затем – нисходящей фазе ПД.(сначала ионы Na+ вносят в нейрон положительный заряд, а затем ионы К+ выносят его, возвращая клетку в исходное состояние). Для закрытия Na+-каналов на пике ПД служит дополнительная (внутриклеточная, инактивационная, И-) створка – h-ворота. Вторая створка (активационная, А-) – m-ворота.

• Реполяризация: абсолютная рефрактерность (полная нечувствительность к стимуляции из-за закрытой h-створки

• Гиперполяризация:относительная рефрактерность(пороговый стимул>, чем обычно)

Поскольку К+-каналы начинают закрываться довольно поздно (вслед за проходом уровня -50 мВ), заряд нейрона после ПД нередко опускается

ниже ПП (следовая гиперполяризация, относит. рефрактерность).

Вершина ПД («овершут») – момент равенства токов натрия и калия; она не м.б. выше равновесного потенциала для натрия, который составляет 61.5 мВ при соотношении Na+out : Na+in = 10 : 1 (по уравнению Нернста).

• тетродотоксин –яд рыбы фугу (аминогруппа работает как «пробка» для Na+-канала)

ТЕА – тетраэтиламмоний: работает как «пробка» по отношению к К+-каналу.

В результате восходящая фаза ПД изменяется мало, нисходящая – затягивается до 50 и > мс (реполяризация происходит за счет постоянно открытых К+-каналов, которых примерно в 100 раз <, чем электрочувствительных); ТЭА вызывает глубокую потерю сознания.

Na+-K+-АТФаза постоянно откачивает из клетки избыток Na+ и возвращает назад K+. Без этого нейрон потерял бы ПП уже через несколько сотен ПД. Важно также, что чем > проникло в клетку Na+, тем активнее работает насос. Если ПД возник хотя бы в одной точке мембраны нейрона – он распространяется по всей мембране.

Причина: деполяризация в точке появления ПД играет роль запускающего (надпорогового, около 100 мВ) стимула по отношению к соседним точкам. Это сходно с «кругами на воде», а точнее – с горением бенгальского огня. Скорость такого распространения низка и не превышает у человека 1-2 м/с (диаметр аксона 1-2 мкм). ДП от исходной точки распространяется во все стороны и, убегая по аксону, запускает выброс медиатора

• Открытие Na+-каналов «разрешает» вход Na+ в клетку; развивается волна деполяризации – «возбуждающий постсинаптический потенциал» (ВПСП).

• Открытие K+-каналов «разрешает» выход K+ из клетки; развивается волна гиперполяризации – «тормозный постсинаптический потенциал» (ТПСП).

 Управление работой сердца.

С клетками-пейсмекерами («водители ритма») контактируют как симпатические, так и парасимпатические волокна, выделяя Ne и Ацх, они регулируют соотношение постоянно открытых Na+- и K+-каналов, управляет частотой сердцебиений. С «рабочими» клетками сердца контактируют только симпатические волокна; выделяя Ne, они увеличивают открывание Ca2+ каналов. В результате на фазе плато в мышечную клетку входит больше Ca2+, сокращение усиливается. Стимуляция симпатических нервов: частота разрядов пейсмекера растёт за счёт увеличения Na+- проводимости и снижения K+-проводимости.

!! Для возникновения потенциала покоя также необходимо существование в мембране нервных клеток открытых ионных каналов, в результате чего мембрана становится проницаемой для определенных ионов, получающих возможность свободно перемещаться между цитоплазмой и межклеточной средой. Ключевое значение для появления ПП имеют постоянно открытые (проточные) К+-каналы. Они представляют собой белковые молекулы, проход внутри которых специфически настроен на пропуск ионов К+.

!! Ионы, участвующие в генерации ПД, те же, что и в случае потенциала покоя — Na+ и К+. При развитии ПД натрий входит в нейрон, а калий выходит. Ионные каналы, через которые они движутся, относятся к отдельному классу — потенциал-зависимым (электрочувствительным) ионным каналам.

Запуск импульсной активности в нервной системе осуществляют два основных фактора.

• Первый из них — стимулы, действующие на чувствительные клетки сенсорных систем и изменяющие проницаемость их мембраны. Это приводит к развитию особых рецепторных потенциалов и в итоге — к генерации ПД.

• Второй фактор — выделение медиатора из пресинаптического окончания. Попав в синаптическую щель, медиатор воз-

воздействует на постсинаптическую мембрану, возбуждая или

тормозя следующий нейрон. Процессы подобного возбуждения или торможения связаны с деятельностью еще одного типа ионных каналов — лиганд-зависимых (хемочувствительных). Они находятся на мембране, непосредственно окружающей синаптический контакт. Обычно они закрыты. Их открывание происходит лишь при появлении медиатора, несущего сигнал химического вещества (отсюда термин «хемочувствительные»). Лиганд-зависимые каналы можно разделить на три основных класса: избирательно проницаемые по отношению к ионам Na+, ионам К+ и ионам С1~. Отрывание первых из них приведет к входу в клетку ионов Na+ и деполяризации нейрона (рис. 3.14, а), во время которой разность потенциалов на мембране оказывается приближенной к порогу запуска ПД. В этот момент меньший, чем обычно, стимул может вызвать реакцию нейрона, т. е. нервная клетка находится в относительно возбужденном состоянии. В связи с этим локальная деполяризация мембраны под действием медиатора была названа возбуждающим постсинаптическим потенциалом (ВПСП). Медиаторы, вызывающие ВПСП, отнесены к группе возбуждающих медиаторов. Открывание хемочувствительных С1~-каналов приводит к входу в клетку ионов хлора; открывание К+-каналов — к выходу ионов калия.

4. Хемочувствительные ионные каналы:сравнение свойств, возбуждающие и тормозные эффекты, функции в синапсах, нервных и мышечных клетках.

Хемочувствительные ионные каналы: особый тип белковых каналов, находятся на мембране, окружающей синаптический контакт. Открывание — при появлении медиатора.

3 класса: избирательно проницаемые по отношению к:

1.) ионам Na

2.) ионам К

3.) ионам Cl

Открывание 1. - вход в клетку Na, деполяризация, возникновение возбуждающего постсинаптического потенциала(ВПСП), заряд нейрона повышается, для запуска ПД необходим меньший стимул.

Открывание 2 и 3 — вход в клетку К, Cl, гиперполяризация, возникает тормозный постсинаптический потенциал(ТПСП), для запуска ПД — больший стимул. Такие функции мозга, как внимание и двигательный контроль, основаны на работе ТПСП.

Работа ТПСП, основанная на 3, заметна только на фоне ВПСП, в связи с тем,что Cl несет отрицательный заряд и нормальный ПП мешает его входу.

ВПСП и ТПСП — длительность около 10мс(иногда 50-100мс)

амплитуда 5-10мВ(в крупном нервно-мышечном синапсе аналог ВПСП-потенциал концевой пластинки-может достигать 40мВ и более)

Одиночный ВПСП не может запустить ПД, для достижения порога запуска необходима временная и/или пространственная суммация. При этом идет конкуренция с ТПСП, для которых тоже возможна суммация. ПД возникает, если разность всех ВПСП и ТПСП больше порогового стимула.

Суммация необходима для того, чтобы сигнал «подтвердил свою значиомсть» для НС

По принципу пространственной суммации идет, например, опознавание сенсорных образов, при этом каждый синапс сообщает о наличии определенного признака.

Взаимодействие синапсов, генерирующих ВПСП и ТПСП, лежащих на одном постсинаптическом нейроне лежит в основе всех «вычислительных операций» мозга(например, конкуренция возбуждающих и тормозных сигналов на нейроне промежуточного ядра серого вещества спинного мозга)

5.

Роль ионов К и К-каналов в деятельности нервных клеток:участие в формировании ПП, ПД, ТПСП, торможении пресинаптических окончаний.

Потенциал покоя — постоянный внутриклеточный заряд, возникает за счет разности концентраций K и Na внутри и снаружи клетки(внутри в 30 раз больше К и в 10 раз меньше Na), создается за счет работы Na-K-АТФазы.

При созревания нейрона на мембране образуются постоянно открытие К-каналы, идет диффузия К из клетки. Достигает равновесного потенциала(выход К за счет диффузии становится равен входу К за счет притяжения отрицательного заряда цитоплазмы) при -91мВ(по уравнению Нернста). Реальный ПП — -70мВ.Причина — существование некоторого кол-ва постоянно открытых Na-каналов.

Диффузия K+ из клетки определяется разностью

концентраций К+out и К+in .

Если увеличить К+out , то разность концентраций станет меньше, диффузия – слабее, и для ее остановки потребуется не столь значительный ПП (произойдет сдвиг заряда цито-

плазмы вверх до достижения новой точки равновесия).

Если снизить К+out , то раз-ность концентраций станет больше, диффузия – силь-нее, и для ее остановки по-требуется более значитель-ный ПП (сдвиг заряда цито-плазмы вниз).

Нисходящая фаза ПД (реполяризация):

выход из клетки «порции» К+.

В основе этого процесса — открывание и закрывание элоктрочувствительного К-канала.

К+-каналы открываются медленно – в течение примерно

0.5 мс после стимула; закрываются они в большинстве

своем к моменту снижения заряда нейрона до уровня ПП.

Поскольку К+-каналы начинают закрываться довольно поздно (вслед за проходом уровня -50 мВ), заряд нейрона после ПД нередко опускается

ниже ПП (следовая гиперполяризация, относит. рефрактерность).

Открывание хемочувствительного ионного К- канала— вход в клетку К, гиперполяризация, возникает тормозный постсинаптический потенциал(ТПСП), для запуска ПД — больший стимул. Такие функции мозга, как внимание и двигательный контроль, основаны на работе ТПСП.

6. Роль ионов Na и Na-каналов в деятельности нервных клеток:участие в формировании ПП,ПД, ВПСП, ритма пейсмекеров.

Потенциал покоя — постоянный внутриклеточный заряд, возникает за счет разности концентраций K и Na внутри и снаружи клетки(внутри в 30 раз больше К и в 10 раз меньше Na), создается за счет работы Na-K-АТФазы.

При созревания нейрона на мембране образуются постоянно открытие К-каналы, идет диффузия К из клетки. Достигает равновесного потенциала(выход К за счет диффузии становится равен входу К за счет притяжения отрицательного заряда цитоплазмы) при -91мВ(по уравнению Нернста). Реальный ПП — -70мВ.Причина — существование некоторого кол-ва постоянно открытых Na-каналов.

вход Na+ ведет к сдвигу заряда цитоплазмы вверх

и частичной потере ПП (отсюда название – «ток утечки Na+ »).

Чем ближе ПП к -50 мВ (чем > у нейрона

постоянно открытых Na+-каналов), тем

< порог. стимул, т.е. выше возбудимость.

Восходящая фаза (деполяризация): вход в клетку «порции» Na+.

Открытие электрочувствительного Na+-канала «разрешает»

вход Na+ в клетку. Открытие электрочувствительного

К+-канала «разрешает» выход К+ из клетки.

Na+-каналы открываются очень быстро после стимула и

самопроизвольно закрываются примерно через 0.5 мс.

Для закрытия Na+-кана-лов на пике ПД служит дополнительная (внутриклеточная, инактивационная, И-) створка – h-ворота.

Вторая створка

(активационная, А-) –

m-ворота.

Открывание хемочувствительных Na-каналов - вход в клетку Na, деполяризация, возникновение возбуждающего постсинаптического потенциала(ВПСП), заряд нейрона повышается, для запуска ПД необходим меньший стимул.

Нейроны-пейсмекеры (водители ритма): у некоторых клеток так много постоянно открытых Na+-каналов, что заряд цитоплазмы не способен удерживаться на стабильном уровне и медленно смещается вверх (деполяризация).

При достижении порога запуска ПД происходит генерация импульса, после заряд нейрона отбрасывается к «минимуму» (около -60 мВ и даже ниже). Затем вновь начинается деполяризация, запуск ПД и т.д.

Чем больше постоянно открытых Na+-каналов, тем чаще следуют ПД. Регуляция частоты разрядов идет также за счет открывания особых типов К+-каналов, реагирующих на гормоны, медиаторы и др. Чем > та-

ких каналов открыто, ниже «минимум» и реже частота ПД.