
- •13.Влажный воздух. Его св-ва.
- •43.Топливо. Элементарный состав (на примере твердого топлива). Теплотворная способность топлива.
- •15. Температурное поле. Температурный градиент.
- •45. Способы сжигания топлива. Виды котлов, их характеристика. Определение поверхности нагрева котла.
- •23. Теплообменные аппараты. Определение поверхности нагрева рекуперативных теплообменников.
- •53. Механическая система вентиляции. Её элементы.
- •18.Конвективный теплообмен. Уравнение Ньютона-Рихмана. Коэффициент теплоотдачи.
- •Коэффициент теплоотдачи
- •29.Определение тепловых потерь,через ограждающие(основные и добавочные).Правила обмена поверхностей охлаждения.
- •40. Коэффициент теплопередачи нагревательных приборов. Определение их поверхности нагрева.
- •10. Круговые циклы. Термодинамический и холодильный коэффициенты.
- •1.Идеальный газ, определение и его св-ва
- •31.Системы водяного отопления с естественной и искусственной циркуляцией. Основные схемы. Их характеристика. Циркуляционной давление в системах
- •25. Сопротивление теплопередачи:
- •55. Устройства для подогрева воздуха.
- •21. Закон Кирхгофа, Ламберта.
- •51. Естественная вентиляция; инфильтрация, аэрация, канальная система вентиляции.
- •46.Котельная установка. Определение. Виды котлов, их характеристика. Определение поверхности нагрева котла.
- •4. Внутренняя энергия идеального газа. Параметры состояния.
- •34. Трубопроводы систем центрального отопления, их соединения, способы прокладки.
- •9. Выражение 1-ого закона термодинамики для различных процессов.
- •17. Теплопроводность плоской стенки. Основное уравнение теплопроводности.
- •39.Размещение и установка, способы присоединения нагревательных приборов к трубопроводам системы отопления
- •47. Централизованное теплоснабжение. Схема тэц. Тепловые сети, способы прокладки тепловых сетей, виды изоляции
- •24.Микроклимат помещения
- •54.Устройства для очистки воздуха
- •26. Теплоустойчивость ограждений. Коэф. Теплоусвоения s. Величина тепловой инерции d
- •56. Вентиляторы: классификация, принцип действия осевых и центробежных вентиляторов. Подбор вентиляторов
- •3.Уравнение состояния идеального газа. Физический смысл газовой постоянной
- •49.Назначение систем вентиляции. Воздухообмен, способы его определения.
- •5. Работа газа. Параметры процесса.
- •35.Расширительный бак.
- •30. Системы отопления: осн.Элем.,классифик., требованиякотоп. Установке.
- •Классификация систем отопления:
- •Цсо классифицируются:
- •По способу переноса тепла воздуху отапливаемого помещения.
- •Требования предъявляемые к системе водяного отопления
- •48.Присоединение местных сист. Отопления к тепл. Сетям
- •6.Теплоёмкость газа.
- •36.Воздухоудаление из систем водяного отопления.
- •Воздухосборники
- •57. Газоснабжение. Основные схемы. Устройство систем газоснабжения.
- •27. Воздухопроницаемость ограждений. Сопротивление воздухопроницаемости ограждений.
- •40. Коэффициент теплопередачи нагревательных приборов. Определение их поверхности нагрева.
- •20.Лучистый теплообмен. Ур-ние Стефана-Больцмана.
- •22. Теплоотдача. Определение процесса. Ур-ние и коэф. Теплоотдачи для плоской стенки.
- •50.Классификация систем вентиляции
- •11. Цикл Карно. Теорема Карно
- •52.Канальная вытяжная гравитационная система вентиляции ,конструирование и ее аэродинамический расчет.
- •38.Нагревательные приборы системцентр. Отопления.
- •2.Термодинамическая система, термодинамический процесс, параметры идеального газа
- •12.Реальный газ. Парообразование в координатах pv.Теплота парообразования. Степень сухости пара.
- •37. Свойство пара как теплоносителя:
- •42.Регулировка теплоотдачи нагр. Приборов.
- •44. Горение топлива. Воздуха.
18.Конвективный теплообмен. Уравнение Ньютона-Рихмана. Коэффициент теплоотдачи.
Конвективный теплообмен, процесс переноса тепла, происходящий в движущихся текучих средах (жидкостях либо газах) и обусловленный совместным действием двух механизмов переноса тепла — собственно конвективного переноса и теплопроводности. Таким образом, в случае К.Т. распространение тепла в пространстве осуществляется за счёт переноса тепла при перемещении текучей среды из области с более высокой температурой в область с меньшей температурой, а также за счёт теплового движения микрочастиц и обмена кинетической энергией между ними.
В связи с тем, что в процессах К. т. важную роль играет конвективный перенос, эти процессы должны в значительной мере зависеть от характера движения жидкости, то есть от значения и направления скорости среды, от распределения скоростей в потоке, от режима движения жидкости (ламинарное течение либо турбулентное). При больших (сверхзвуковых) скоростях движения газа на процессы К. т. начинает влиять распределение давления в потоке. Если движение жидкости обусловлено действием некоторого внешнего побудителя (насоса, вентилятора, компрессора и т.п.), то такое движение называют вынужденным, а происходящий при этом процесс К. т. — вынужденной конвекцией. Если движение жидкости вызвано наличием неоднородного поля температуры, а следовательно, и неоднородной плотности в среде, то такое движение называют свободным или естественным, а процесс К. т. — свободной или естественной конвекцией. На практике встречаются и такие случаи, когда приходится учитывать как вынужденную, так и свободную конвекцию.
Для описания конвективной теплоотдачи используется формула:
qcт = a(Т0—Тст),
где qcт — плотность теплового потока на поверхности, вт/м2; a — коэффициент теплоотдачи, вт/(м2·°С);T0 и Тст — температуры среды (жидкости или газа) и поверхности соответственно. Величину T0 —Тстчасто обозначают DТ и называется температурным напором. Коэффициент теплоотдачи a характеризует интенсивность процесса теплоотдачи; он возрастает при увеличении скорости движения среды и при переходе от ламинарного режима движения к турбулентному в связи с интенсификацией конвективного переноса..
Основной и наиболее трудной проблемой в расчётах процессов конвективной теплоотдачи является нахождение коэффициента теплоотдачи. Современные методы описания процесса К. т., основанные на теории пограничного слоя, позволяют получить теоретические (точные или приближённые) решения для некоторых достаточно простых ситуаций. В большинстве же встречающихся на практике случаев коэффициент теплоотдачи определяют экспериментальным путём. При этом как результаты теоретических решений, так и экспериментальные данные обрабатываются методами подобия теории и представляются обычно в следующем безразмерном виде: Nu = f (Re, Pr) — для вынужденной конвекции иNu = f (Gr, Pr) — для свободной конвекции,
где Nu
=
—
Нуссельта число,— безразмерный
коэффициент теплоотдачи (L
— характерный
размер потока, l — коэффициент
теплопроводности); Re
=
— Рейнольдса
число, характеризующее соотношение сил
инерции и внутреннего трения в потоке
(u
— характерная
скорость движения среды, u — кинематический
коэффициент вязкости); Pr =
— Прандтля
число, определяющее соотношение
интенсивностей термодинамических
процессов (a — коэффициент
температуропроводности); Gr =
Грассхофа
число, характеризующее соотношение
архимедовых сил, сил инерции и внутреннего
трения в потоке (g
— ускорение
свободного падения, b — термический
коэффициент объёмного расширения).
Ур-ние Ньютона-Рихтона.
q=α(tж1-t1),Вт/м2;где α-коэф.теплоотдачи.
α=f(λ,μ,ρ,c,w,t,e…..Ø)