
- •Типы мышечных волокон.
- •Энергетика мышцы
- •П лоскости и оси. Анатомические термины.
- •Виды мышечной работы.
- •Классификация упражнений.
- •Физические качества.
- •5 Основных физический качеств:
- •Гибкость.
- •Упражнения на растягивание (классификация):
- •Методы растягивания.
- •Выносливость.
- •Общие факторы:
- •Местные факторы.
- •Быстрота.
- •Ловкость.
- •Физические качества, развиваемые на различных фитнес-площадках.
- •Составление программ посещения клуба.
- •Биомеханика. Анатомические рычаги.
- •Биомеханический анализ движения.
- •Методика преподавания.
- •Питание.
- •Принципы составления рационов питания.
- •Состав продуктов.
- •Добавки: назначение, рейтинг, дозировка.
- •Медицина.
- •Оценка осанки
- •Оценка положения тела спереди:
- •Элементы лечебной физической культуры в рамках занятия в тренажёрном зале.
стр.
АНАТОМИЯ.
Пассивную часть опорно-двигательного аппарата человека составляет комплекс костей и их соединений — скелет. Скелет состоит из костей черепа, позвоночника и грудной клетки (так называемый осевой скелет), а также костей верхних и нижних конечностей (добавочный скелет).
Скелет характеризуется высокой прочностью и гибкостью, которая обеспечивается способом соединения костей друг с другом.
Подвижное соединение большинства костей придает скелету необходимую гибкость и обеспечивает свободу движений. Помимо фиброзных и хрящевых непрерывных соединений (ими в основном соединяются между собой кости черепа), в скелете существует несколько видов менее жестких соединений костей. Каждый из типов соединения зависит от требуемой степени подвижности и вида нагрузок на данный участок скелета. Соединения с ограниченной подвижностью называются полусуставами или симфизами, а прерывные (синовиальные) соединения — суставами. Сложная геометрия суставных поверхностей в точности отвечает степени свободы данного соединения.
Кости скелета участвуют в процессах кроветворения и в минеральном обмене, а костный мозг является важной составной частью иммунной системы организма. Кроме того, составляющие скелет кости служат опорой для органов и мягких тканей тела, обеспечивают защиту жизненно важных внутренних органов.
Скелет человека продолжает свое формирование в течение всей жизни: кости постоянно обновляются и растут, отвечая росту всего организма; отдельные кости (например, копчиковые или крестцовые), которые у детей существуют раздельно, по мере взросления срастаются в единую кость. К моменту рождения кости скелета окончательно еще не сформированы и многие из них состоят из хрящевой ткани.
Скелет головы, то есть череп, состоит из мозгового и лицевого черепа.
Мозговой череп имеет яйцевидную форму и образован затылочной, лобной, клиновидной, решетчатой, парой височных и парой теменных костей.
Лицевой череп образован шестью парными костями (верхняя челюсть, нижняя носовая раковина, слезная, носовая, скуловая и небная кости) и тремя непарными (нижняя челюсть, подъязычная кость, сошник) и представляет собой начальный отдел пищеварительного и дыхательного аппаратов. Кости обоих черепов соединяются друг с другом при помощи швов и практически неподвижны. Нижняя челюсть соединяется с черепом суставом, поэтому наиболее подвижна, что необходимо для ее участия в акте жевания.
Полость мозгового черепа представляет собой продолжение позвоночного канала, в ней
содержится головной мозг. Верхний отдел мозгового черепа, образованный теменными костями и чешуями лобной, затылочной и височной костей, называется сводом или крышей черепа. Кости свода черепа плоские, их наружная поверхность гладкая и ровная, а внутренняя гладкая, но неровная, так как на ней отмечаются борозды артерий, вен и прилежащих извилин головного мозга. Кровеносные сосуды располагаются в губчатом веществе — диплоэ, находящемся между наружной и внутренней пластинками компактного вещества. Внутренняя пластинка не такая прочная, как внешняя, она гораздо более тонкая и хрупкая. Нижний отдел мозгового черепа, образованный лобной, затылочной, клиновидной и височными костями, называется основанием черепа.
Череп прикреплён к позвоночному столбу, который является защитой спинного мозга. Позвоночник состоит из шейного, грудного, поясничного, крестцового отделов и копчика. Всего насчитывается 32 – 34 позвонков (7 шейных, 12 грудных, 5 поясничных, 5 крестцовых и 3-5 копчиковых, сросшихся воедино).
Конструкция позвоночного столба позволяет ему, сохраняя гибкость и подвижность, выдерживать ту же нагрузку, которую может выдержать в 18 раз более толстый бетонный столб.
Позвоночный столб отвечает за сохранение осанки, служит опорой для тканей и органов, а также принимает участие в формировании стенок грудной полости, таза и брюшной полости. Каждый из позвонков, составляющих позвоночный столб, имеет внутри сквозное позвоночное отверстие. В позвоночном столбе позвоночные отверстия составляют позвоночный канал, содержащий спинной мозг, который таким образом надежно защищен от внешних воздействий.
Во фронтальной проекции позвоночника явственно выделяются два участка, отличающиеся более широкими позвонками. В целом масса и размеры позвонков увеличиваются по направлению от верхних к нижним. Это необходимо, чтобы компенсировать возрастающую нагрузку, которую несут нижние позвонки.
Помимо утолщения позвонков, необходимую степень прочности и упругости позвоночнику обеспечивают несколько его изгибов, лежащих в сагиттальной плоскости. Четыре разнонаправленных изгиба,
чередующиеся в позвоночнике, расположены парами. Изгибу, обращенному вперед (лордозу), соответствует изгиб, обращенный назад (кифоз). Таким образом, шейному и поясничному лордозам отвечают грудной и крестцовый кифозы. Благодаря такой конструкции позвоночник работает подобно пружине, распределяя нагрузку равномерно по всей своей длине.
Позвоночный столб (вид А, справа):
1 — шейный лордоз
2 — грудной кифоз
3 — поясничный лордоз
4 — крестцовый кифоз
5 — выступающий позвонок
6 — позвоночный канал
7 — остистые отростки;
8 — тело позвонка;
9 — межпозвоночные отверстия;
10 — крестцовый канал
11 ___ копчик
Позвоночный столб (вид Б, спереди):
1— шейные позвонки;
2 — грудные позвонки;
3 — поясничные позвонки;
4 — крестцовые позвонки;
5 — атлант;
6 — поперечные отростки;
7 — копчик
11
Вид А Вид Б
3-ий поясничный позвонок сбоку:
1 — верхний суставной отросток;
2 — верхняя позвоночная вырезка;
3 — верхняя реберная ямка;
4 — поперечный отросток;
5 — реберная ямка поперечного отростка;
6 — тело позвонка;
7 — остистый отросток;
8 — нижний суставной отросток;
9 — нижняя позвоночная вырезка;
10 — нижняя реберная ямка;
3-ий поясничный позвонок сверху:
1 — остистый отросток;
2 — верхний суставной отросток;
3 — нижний суставной отросток;
4 — поперечный отросток;
5 — позвоночное отверстие;
6 — тело позвонка
Грудная клетка состоит из ребер, соединенных передними концами с грудиной, а задними — с грудными позвонками. Фронтальная поверхность грудной клетки, представленная грудиной и передними концами ребер, значительно более короткая, чем задняя или боковые ее поверхности. Полость грудной клетки, ограниченная снизу диафрагмой, содержит жизненно важные органы — сердце, легкие, крупные сосуды и нервы. Также внутри грудной клетки (в верхней ее трети, сразу за грудиной) находится вилочковая железа (тимус).
Скелет верхней конечности. Кости верхней конечности представлены поясом верхней конечности (кости лопатки и ключицы) и скелетом свободной части верхней конечности (плечевая, локтевая, лучевая, пястные кости и фаланги пальцев).
Скелет нижней конечности. В скелете нижней конечности выделяют пояс нижней конечности (тазовые кости) и свободную часть нижней конечности (парные бедренная кость, надколенник, кости голени — большеберцовая и малоберцовая и кости стопы).
череп
ключичная кость
череп
позвоночный столб
плечевая кость
лопатка
локтевая кость
грудная клетка
лучевая кость
кости таза
бедренная кость
большеберцовая
кость
малоберцовая кость
В
Б
А
Лопатка: А — вид спереди; Б — вид
сзади; В — вид сбоку:
1 — клювовидный отросток;
2 — верхний край;
3 — верхний угол;
4 — акромион;
5 — суставная впадина;
6 — подлопаточная ямка;
7 — шейка лопатки;
8 — медиальный край;
9 — латеральный край;
10 — нижний угол;
11 — вырезка лопатки;
12 — надостная ямка;
13 — ость лопатки;
14 — подостная ямка
Далее следует разобрать строение некоторых суставов.
Плечевой сустав.
Капсула и связки плечевого сустава:
1 — акромион лопатки;
2 — клювовидный отросток лопатки;
3 — клювовидно-плечевая связка;
4 — большой бугорок плечевой кости;
5 — сухожилие длинной головки двуглавой
мышцы плеча;
6 — капсула сустава
Плечевой сустав (фронтальный разрез):
1— капсула сустава;
2 — суставная впадина лопатки;
3 — головка плечевой кости;
4 — суставная полость;
5 — сухожилие длинной головки двуглавой
мышцы плеча;
6 — суставная губа;
7 — нижний заворот синовиальной оболочки
сустава
Локтевой сустав.
Связки локтевого сустава:
1 — суставная капсула;
2 — локтевая коллатеральная связка;
3 — головка мыщелка плечевой кости;
4 — блок плечевой кости;
5 — венечный отросток локтевой кости;
6 — головка лучевой кости;
7 — межкостная перепонка предплечья
Локтевой сустав (вид спереди):
1 — суставная капсула;
2 — локтевая коллатеральная связка;
3 — головка мыщелка плечевой кости;
4 — блок плечевой кости;
5 — венечный отросток локтевой кости;
6 — головка лучевой кости;
7 — межкостная перепонка предплечья
Соединение таза:
1— подвздошно-поясничная связка;
2 — дорсальная крестцово-подвздошная
связка;
3 — крестцово-остистая связка;
4 — крестцово-бугорная связка
Тазобедренный сустав.
Тазобедренный сустав (вид спереди):
1 — подвздошно-бедренная связка;
2 — суставная сумка;
3 — лобково-реберная связка;
4 — запирательная мембрана
Тазобедренный сустав
(фронтальный разрез):
1 — круговая зона;
2 — связка головки бедренной кости;
3 — связка вертлужной впадины;
4 — суставная сумка
Коленный сустав.
Коленный сустав (вид спереди):
1 — надколенник;
2 — большеберцовая коллатеральная
связка;
3 — связка надколенника;
4 — малоберцовая коллатеральная связка;
5 — бугристость малоберцовой кости;
6 — бугристость большеберцовой кости
Коленный сустав с удаленной суставной
капсулой:
1 — бедренная кость;
2 — задняя крестообразная связка;
3 — передняя крестообразная связка;
4 — малоберцовая коллатеральная связка;
5 — медиальный мениск;
6 — латеральный мениск;
7 — большеберцовая коллатеральная
связка;
8 — большеберцовая кость;
9 — связка надколенника;
10 — надколенник
При согнутом колене возможна ротация
голени, вследствие ослабления
коллатеральных связок.
Мышцы
Благодаря мышцам, точнее, благодаря их способности сокращаться человеческий организм может выполнять различные движения, сохранять равновесие и определенное положение тела в пространстве. Мышцы, в отличие от костей и соединений, являются активным элементом аппарата движения.
Сократительная способность мышц обеспечивается за счет структурных элементов мышечной ткани, которые называются миофибриллами. От строения миофибрилл зависит поперечная исчерченность мышц — чередование светлых и темных полос, а толщина мышечных волокон зависит от количества и поперечного сечения миофибрилл. Миофибриллы состоят из повторяющихся блоков, называемых саркомерами, и располагаются параллельно длинной оси мышечного волокна. Скелетные мышцы образованы поперечнополосатой мышечной тканью, основным структурным элементом которой являются мышечные волокна — миосимпласт. Волокнами они названы из-за большой разницы между поперечным сечением (от 0,05 до 0,11 мм) и длиной мышечной клетки (до 15 см). Длина волокон зависит от длины и строения самой мышцы.
Скелетная мышца, которая также называется поперечнополосатой мышцей (по названию образующих ее волокон) или произвольной (по ее сократительным особенностям), прикрепляется непосредственно к кости или суставу при помощи сухожилия. Отдельные мышцы на одном конце могут прикрепляться на костях, а на другом — на коже. Функционирование мышц заключается в их сокращении, при котором мышца укорачивается, благодаря чему точки, на которых крепится мышца, сближаются. Работой скелетных мышц можно управлять: сокращать или расслаблять в любой необходимый момент, варьировать скорость и интенсивность сокращений.
Средняя мышечная масса взрослого человека составляет примерно 30 кг у мужчин, то есть 42–47% от общей массы тела, и 17 кг у женщин — 30–35% от общей массы тела. Всего в теле человека примерно 300 мышц, которые объединены в группы в соответствии с выполняемыми ими функциями.
Мышечные волокна располагаются параллельными рядами и соединяются в пучки, которые образуют саму скелетную мышцу. Небольшие мышечные пучки покрыты тонкой соединительной тканью — эндомизием, крупные — перимизием, а всю мышцу в целом покрывает плотная соединительная ткань — эпимизий. На концах мышцы переходят в сухожилия, которые обладают большей эластичностью, упругостью и прочностью, чем мышечные волокна, что позволяет избегать разрывов мышц и их отрывов от костей при интенсивной внутренней нагрузке или сильном внешнем воздействии.
Волокна составляют примерно 86–90% от общей массы мышцы. Остальные проценты делят между собой кровеносные сосуды и нервы, обеспечивающие трофику (жизнедеятельность), питание и работоспособность мышц.
В мышце выделяют головку — начальную часть, брюшко — среднюю часть и хвост — конечную часть. От длины мышцы зависит степень размаха, который она может обеспечить. У каждой мышцы есть точка начала и место крепления. Форма мышц разнообразна и зависит от соотношения мышечных волокон и сухожилий. Выделяют следующие формы мышц:
1) веретенообразная мышца — мышца, сужающаяся к обоим концам и заканчивающаяся сухожилиями;
2) двуглавая/трехглавая/четырехглавая мышца — мышца, у которой при одном брюшке может наблюдаться несколько головок, имеющих разное начало и переходящих в разные сухожилия;
3) двубрюшная мышца — мышца, брюшко которой делится на два промежуточным сухожилием, называемым сухожильной дугой;
4) многобрюшная мышца, например прямая мышца — мышца, ход волокон которой прерывается одной или несколькими сухожильными перемычками
5) широкая мышца — мышца, у которой мышечные волокна имеют вид пластов, переходящих в широкое сухожилие — апоневроз. Такие мышцы встречаются преимущественно на туловище;
6) одноперистая мышца – мышца, у которой мышечные волокна под углом прикрепляются к одному краю сухожилия;
7) двуперистая мышца — мышца, волокна которой располагаются по обеим сторонам сухожилия также под углом.
Формы мышц:
1 — веретенообразная мышца:
а) брюшко, б) сухожилие;
2 — двуглавая мышца:
а) головка, б) брюшко,
в) хвост;
3 — двубрюшная мышца:
а) брюшко,
б) сухожильная дуга;
4 — многобрюшная мышца:
а) брюшко,
б) сухожильная перемычка
5 — широкая мышца:
а) брюшко, б) апоневроз;
6 — одноперистая мышца;
7 — двуперистая мышца
По месту крепления выделяют суставную мышцу — мышцу, крепящуюся к суставам. Кольцеобразные мышцы либо замыкают полость и в этом случае называются круговыми, либо сжимают выход из полостного органа и именуются сфинктерами. По размеру мышцы подразделяются на длинные, образующие мышечные группы конечностей, и короткие, находящиеся в глубоких слоях спины.
В организме существуют различные анатомические образования, облегчающие работу мышц. Например, синовиальные сумки располагаются в местах наиболее интенсивного движения мышц и сухожилий. Они представляют собой щелевидные полости, заполненные жидкостью — синовией, и способствуют снижению трения. Между кожей и выступом кости располагаются подкожные синовиальные сумки, а под сухожилиями — подсухожильные. В области стоп и кистей, то есть в наиболее подвижных местах верхних и нижних конечностей, располагаются влагалища сухожилий мышц. Внутри этих фиброзных или костно-фиброзных каналов находятся синовиальные влагалища, листы которых, смазанные синовией, обеспечивают свободное скольжение сухожилий строго в определенных направлениях. В тех местах, где через кость перехлестывается сухожилие, на самой кости находятся покрытые хрящом впадинка, которая называется блоком. Блоки препятствуют смещению сухожилий при смене их направления. В некоторых блоковидных суставах в толще сухожилий находятся сесамовидные кости, способствующие свободному движению в суставах. Они встречаются в основании первых фаланг и надколенниках.
Отдельные мышцы и группы мышц покрывают фасции, которые выполняют функцию защитной оболочки. Они образованы соединительной тканью и содержат коллагеновые и эластические волокна. Фасции задают направление хода кровяных и лимфатических сосудов и нервов, а в некоторых случаях являются местом начала или прикрепления мышц.
Глубокие фасции образуют для мышц, которые они окружают, фиброзные влагалища с отверстиями для сосудов и нервов. В тех случаях, когда мышцы располагаются в несколько слоёв, глубокие фасции расслаиваются на отдельные пластинки, в которых формируются влагалища для каждой отдельной мышцы. Пластинки фасции соединены друг с другом фиброзными межмышечными перегородками, которые отделяют одну группу мышц от другой и срастаются с надкостницей костей, образовывая костно-фиброзные влагалища. Поверхностные фасции находятся непосредственно под подкожной жировой клетчаткой, покрывая целую часть тела и следуя по ходу кожного покрова.
Скелетные мышцы
Мышцы — одна из четырех наиболее важных тканей в организме среди таких, как нервная, соединительная и эпителиальная. Существует три вида мышц: сердечная мышца; гладкая мускулатура, локализованная в стенках кровеносных сосудов, дыхательных путей, кишечника и мочевого пузыря; скелетная (поперечно-полосатая) мускулатура. Только скелетные мышцы находятся под прямым волевым контролем, обеспечивающим как перемещение частей тела, так и поддержание позы. Независимо от вида мышечной деятельности функцией мышцы является проявление ею силы сокращения и использование для этого необходимой энергии.
Структура, иннервация и кровоснабжение. Скелетные мышцы отделены от соединительной ткани (перимизиума, или фасции) мембранами. Соединительная ткань проникает и в полость самой мышцы, уменьшаясь при этом по толщине (в данном случае соединительную ткань называют эндомизиумом), в связи с чем, происходит разделение мышцы на все более и более мелкие компартменты. Наименьшими из них являются пучки, включающие большое количество мышечных волокон, прикрепленных друг к другу и к эндомизиуму соединительной тканью. К обоим концам мышцы эта ткань переходит в сухожилия, прикрепляемые к костям скелета.
Сухожилия представляют собой плотно упакованные коллагеновые волокна, образующие соединения между мышцами и костями. Внешняя коллагеновая мембрана живой кости (периостеум) переходит в мембрану волокон сухожилия.
Отдельные мышцы состоят из многих мышечных волокон, параллельно соединенных между собой, которые могут (но не обязательно) протягиваться по всей ее длине. Внутри мышцы соединительная ткань также покрывает крупные кровеносные сосуды и нервы. Почти все мышечные волокна иннервируются только одним нервным окончанием, расположенным посредине волокна.
Особый участок поверхности мышечного волокна, прилегающий к нервному окончанию в области синапса, называется концевой пластинкой. Нейропередатчиком, который, освобождаясь из нервного окончания, инициирует развитие мышцей напряжения, является ацетил-холин.
Кровеносные сосуды ориентированы в основном параллельно мышечным волокнам, а многочисленные капилляры направлены в пространство между ними. Гладкая мускулатура кровеносных сосудов сокращается или расслабляется под влиянием нервных, гормональных и локальных воздействий, что обеспечивает регуляцию тока крови. Во время выполнения физических упражнений кровоснабжение работающих мышц может возрасти в 100 раз по сравнению с уровнем покоя.
Мышечные клетки представляют собой длинные многоядерные волокна. Их длина может варьировать от нескольких миллиметров до 30 см, а диаметр — в пределах 10-100 мкм. Каждое мышечное волокно окружено гомогенной мембраной — сарколеммой, содержащей на своей наружной поверхности коллагеновые волокна, с помощью которых прикрепляется к внутримышечным элементам соединительной ткани. Внутренняя часть сарколеммы обладает свойством, благодаря которому питательные вещества и шлаки могут проходить через мембрану, в результате в мышечном волокне может возникать и распространяться потенциал действия. Инвагинированные участки сарколеммы называются «Т-трубочки», по которым потенциал действия распространяется внутрь мышечного волокна.
Ультраструктура мышечных волокон. Внутренность мышечного волокна заполнена саркоплазмой (цитоплазмой мышечной клетки), представляющей собой вязкую жидкость, содержащую ядра, митохондрии, миоглобин и около 500 нитевидных миофибрилл толщиной 1-3 мкм каждая и располагающихся от одного конца мышечного волокна к другому. Красный цвет саркоплазмы обусловлен присутствием в ней миоглобина — внутриклеточного дыхательного пигмента, благодаря которому создается запас кислорода. Миофибриллы находятся в окружении более совершенной структуры — эндоплазматического ретикулума, называемого саркоплазматическим ретикулумом (СР), который принимает участие в процессах роста, развития и восстановления мышцы. Взаимосвязанные мембранные трубочки находятся в узком пространстве между миофибриллами, окружая их и располагаясь параллельно с ними. Под микроскопом мышечные волокна обнаруживают поперечно-полосатую исчерченность, связанную с уникальной организацией миофибрилл. Темные полосы А сменяются светлыми дисками I по всей длине каждой миофибриллы, которые являются сократительными элементами. Как показано, посредине A-диска имеется более светлая полоска, называемая зоной Н, которая видима только в расслабленном состоянии мышечного волокна. Сама зона H разделяется темной линией М.. Диски I также разделяются посредине темной зоной, названной Z-пластинками. Саркомер определяется как участок, расположенный между двумя последовательными Z-пластинками и является наименьшим сократительным элементом мышечного волокна. Каждая миофибрилла представляет собой цепь саркомеров. На молекулярном уровне можно обнаружить, что в паттерне миофибриллярных участков внутри каждого саркомера имеется два типа белковых филаментов (миофиламентов). Тонкие миофиламенты включают белки — актин, тропомиозин и тропонин; они простираются через диск I и частично проникают в диск А; толстые миофиламенты содержат белок миозин и располагаются в A-диске. Линия Z представляет собой белковый слой в форме диска и служит участком, к которому прикреплены тонкие миофиламенты.
Зона Н является областью, в которой толстые филаменты не перекрываются тонкими, поэтому под микроскопом она выглядит более светлой по сравнению с диском А, когда миофибрилла находится в расслабленном состоянии. М-линия посредине зоны Н выглядит несколько темнее из-за тонких прядей, соединяющих воедино примыкающие толстые миофиламенты.
Последовательные поперечные разрезы миофибриллы обнаруживают, что в областях, где толстые и тонкие миофиламенты перекрываются, каждый толстый миофиламент окружен гексагональным расположением шести тонких миофиламентов, а каждый тонкий миофиламент расположен внутри треугольника, образованного тремя толстыми миофиламентами.
В присутствии достаточного количества кальция и аденозинтрифосфата (АТФ) филаменты взаимодействуют между собой, образуя актомиозин, и сокращаются, скользя, относительно друг друга. Электрическое возбуждение, распространяясь в виде потенциала действия вдоль саркомера и к Т трубочкам, вызывает освобождение кальция из саркоплазматического ретикулума и выход его в саркоплазму с последующей активацией сокращением филаментов. Возбуждение инициируется достижением нервного импульса мышечной мембраны через двигательную концевую пластинку.
Молекулярный состав миофиламентов. Каждый толстый миофиламент содержит около 200 молекул миозина, из которых каждая, в свою очередь, имеет стержнеподобный «хвост» с двумя глобулярными структурами на конце, которые обладают АТФ-азной активностью. Миозиновые головки взаимодействуют со специфическими участками, расположенными на тонких миофиламентах с образованием, так называемых поперечных мостиков, и генерируют развитие напряжения, приводящего к сокращению мышцы. В толстом филаменте молекулы миозина связаны вместе таким образом, что их «хвосты» образуют центральную часть филамента, а их глобулярные структуры обращены наружной поверхностью в направлениях, противоположных друг другу. Благодаря этому каждый толстый филамент имеет относительно гладкую центральную секцию с двумя концами, усеянными множеством подвижных головок миозина.
Тонкие миофиламенты включают в себя актин и несколько регуля-торных белков. Глобулярные (G) мономеры актина полимеризованы внутри длинных участков, называемых фибриллярным (F) актином. Две актиновые нити, сплетаясь вместе, образуют основу каждого тонкого филамента. Далее хвостоподобные молекулы тропомиозина обвивают цепочки F-актина, чем помогают миофиламенту стать прочнее.
Другим важным белком, присутствующим в тонких филаментах, является тропонин, который содержит три субъединицы. Одна из них, тропонин I, связана с актином; другая, тропонин Т, связана с тропомиозином, а третья, тропонин С, может быть связана с ионами кальция.
Механизм проявления силы мышечного сокращения. При сокращении мышечного волокна его саркомеры укорачиваются, Н-зоны исчезают, и расстояние между ближайшими линиями Z уменьшается. Сами же филаменты не изменяют своей длины. Скольжение миофиламентов начинается, когда головки миозина образуют поперечные мостики, прикрепляясь к активным участкам актиновых субъединиц тонких филаментов. Каждое образование и разъединение поперечных мостиков во время сокращения происходит несколько раз храповикоподобным образом, в результате чего тонкие филаменты перемещаются в направлении центра саркомера. В результате такого процесса длина всего мышечного волокна становится короче.
Для образования миозиновых поперечных мостиков требуется присутствие ионов кальция. В расслабленном мышечном волокне кальций находится в саркоплазматическом ретикулуме и, в отсутствие этих ионов, связывающие участки миозина физически блокированы тропомиозином. Ионы кальция при освобождении из саркоплазматического ре-тикулума (вследствие возбуждения нервным импульсом) связываются с тропонином С и тем самым изменяют его конформацию, что приводит к физическому перемещению тропомиозина от связывающих участков миозина на расположенную внутри цепь актина.
Активированные, или «склеванные» головки теперь присоединяются к актину и, в данном случае головная часть молекулы изменяет свою активную конфигурацию до такого состояния своей связывающей поверхности, которая обеспечивает ее перемещение на тонкий филамент путем скольжения по направлению к средине саркомера. Представленная схема отражает развитие цикла поперечных мостиков и стимуляцию его аденозиндифосфатом (АДФ) и неорганическим фосфатом (Фн). Как только новая молекула АТФ присоединяется к участку миозиновой головки, обладающему АТФ-азной активностью, миозиновые мостики отсоединяются от актина. Гидролиз АТФ до АДФ и Фн, происходящий при участии АТФ-азы, обеспечивает энергией, необходимой для возвращения миозина в его активированное, «склевывающее» состояние, позволяющее при наличии энергетического потенциала осуществлять последовательную работу поперечных мостиков. До тех пор, пока миозин находится в активном состоянии, АДФ и Фн остаются связанными с миозиновой головкой. Когда же последняя обретает способность связываться с другим участком актина, расположенного последовательно в тонком миофиламенте, цикл связывания, развития напряжения и разъединения поперечных мостиков, как и активация миозина, повторяются. Взаимное скольжение филаментов описанным способом может продолжаться до тех пор, пока в саркоплазме присутствуют ионы кальция (концентрация должна быть не менее 10 ммоль). Перемещение и обратный захват АТФ-зависимой кальциевой помпой саркоплазматического ретикулума кальция восстанавливает тропомиозиновое угнетение образования поперечных мостиков и расслабление мышечных волокон.
Регуляция силы мышечных сокращений. Проявление мышечным волокном силы сокращения является результатом нервной импульсации от двигательного нерва, распространяющейся в виде потенциала действия по сарколемме. Потенциал действия, достигнув двигательной концевой пластинки, вызывает освобождение нейромедиатора ацетилхолина, который перемещается специальным синапсом между нервным окончанием и мышечным волокном (нейромышечным соединением) и взаимодействует с ацетилхолиновыми рецепторами, расположенными на сарколемме. Это приводит к открытию натриевых каналов, в результате чего поток ионов натрия внутрь мышечного волокна снижает градиент их концентрации. Происходит деполяризация мембраны и, как следствие, генерация потенциала действия, который, распространяясь по сарколемме мышечного волокна в обе стороны и внутрь Т-трубочек, вызывает полную активацию мышечного волокна. Передача потенциала действия к участкам, где Т-трубочки примыкают к саркоплазматическому ретикулуму, обусловливает последующее освобождение из него кальция (кальциевые каналы временно открываются) и его свободная концентрация в саркоплазме становится более 10 ммоль, что сопровождается образованием поперечных мостиков, как описано выше. Последующая активация кальциевой помпы приводит к возвращению кальция в саркоплазматический ретикулум (обычно это происходит в пределах 30 мс), а ингибирование тропомиозина восстанавливается, если концентрация кальция в саркоплазме становится очень низкой. Такая последовательность процессов повторяется, когда другие импульсы, поступающие от двигательного нерва, достигают двигательной концевой пластинки. Если же частота импульсации высокая, то ионы кальция продолжают высвобождаться из саркоплазматического ретикулума и концентрация кальция в саркоплазме, окружающей миофиламенты, значительно возрастает. В таком случае, мышечные волокна, между последующими стимулами полностью не расслабляются. И развиваемое мышцей напряжение будет более сильным и непрерывным (вплоть до максимального), до тех пор, пока не прекратится нервная импульсация.
Нервная импульсация. Группы мышечных волокон (одного и того же типа) объединены в мышце их взаимосвязью с одним и тем же двигательным нейроном. Каждая такая группа называется двигательной единицей. Двигательные единицы различаются по количеству содержащихся в них волокон: одни из них содержат около 50 волокон, другие — до 1700. Мышцы, выполняющие тонкие градуальные движения (например, мышцы глаз и рук), содержат незначительное количество двигательных единиц; мышцы же, имеющие большую массу и выполняющие грубые движения (например, мышцы ног), имеют большее количество двигательных единиц.
Импульс, распространяющийся по аксону двигательного нерва, вызывает деполяризацию его концевых пластинок. Все мышечные волокна, принадлежащие одной и той же двигательной единице, будут либо не отвечать (а), либо отвечать (б) проведением потенциала действия по мышечным волокнам, что сопровождается одновременной активацией всех волокон.
Ответы мышечных волокон на одиночные импульсы (достаточной силы) с одиночным сокращением и расслаблением продолжаются около 30 мс. Повторяющиеся сверхпороговые стимулы при сближении их вплотную вызывают суммацию, и когда частота стимуляции составляет более 60 в секунду (т. е. 60 Гц), происходит слияние одиночных сокращений (тетанус), при котором мышечное волокно развивает более высокое напряжение.
Обычно частота стимуляции находится в пределах от 5 Гц, при которой развивается низкое напряжение, до 70 Гц. В последнем случае сила сокращения мышечных волокон высокая. Так, сила сокращений целостной мышцы может повышаться в результате повышения частоты стимуляции активных двигательных единиц (а), а также вовлечением (рекрутированием) и увеличением их количества (б).
При выполнении физических упражнений с фиксированной мощностью по мере развития утомления некоторые двигательные единицы перестают участвовать в развиваемом мышцей напряжении, однако их вклад в генерацию силы будет немедленно возмещаться другими двигательными единицами до тех пор, пока все из них не будут рекрутированы. При выполнении физических упражнений максимальной интенсивности первоначально полное (или почти полное) рекрутирование всех двигательных единиц сопровождается в дальнейшем постепенным снижением эффективности их участия в развитии мышцей напряжения, т. е. проявлением утомления.
Типы мышечных волокон.
Существование различных типов волокон в скелетных мышцах достаточно очевидно и их изучение продолжается на протяжении длительного периода. Однако детальные физиологические и биохимические основы этой дифференциации, а также их функциональное значение установлены лишь в последнее время. Во многом стимулами для этих исследований явилось понимание того, что успех в спортивных соревнованиях, требующих способности спортсмена к проявлению либо максимальной силы, либо выносливости, существенно зависит от пропорционального соотношения в мышце типов волокон. Мышечные волокна, однако, чрезвычайно пластичны, и хотя их соотношение генетически детерминировано, реализация определенной тренировочной программы способна во многом повлиять на метаболический потенциал мышцы независимо от соотношения в ней типов волокон.
Первоначальной основой для разделения мышечных волокон на красные, белые и промежуточные применительно к целостной мышце послужил простой визуальный осмотр. Однако основной функциональной характеристикой дифференциации типов мышечных волокон является скорость их укорочения и расслабления. Медленносокращающиеся волокна характеризуются относительно продолжительным временем, необходимым для достижения пика напряжения (около 80-100 мс для волокон мышц человека), а также длительным полупериодом расслабления. В противоположность им для достижения пика напряжения быстросокращающимися волокнами у человека требуется около 40 мс, следовательно, время их расслабления соответственно короче. Эти два типа волокон образуют отдельные группы с частичным совпадением их свойств.
Поскольку для изучения механических свойств волокон доступ к ткани затруднителен, а небольшие образцы мышцы относительно легко могут быть получены с помощью пункционной биопсии, классификация типов мышечных волокон обычно базируется на биохимическом окрашивании их поперечных срезов. На этой основе волокна мышц человека обычно подразделяют на три главные группы — типы I, На и Пб, хотя возможно также дальнейшее подразделение. Аналогичное деление свойственно и мышцам животных, волокна которых классифицируются на основе прямого определения их функциональных свойств: соответственно медленносокращающиеся, быстросокращающиеся медленноутомляемые и быстросокращающиеся быстроутомляемые.
Миозин различных типов мышечных волокон существует в различных молекулярных формах (изоформах), а АТФ-азная активность миофибрилл проявляет неодинаковую чувствительность к рН. Миозиновая АТФ-аза волокон типа II инактивируется при низких значениях рН (менее 4,5), тогда как АТФ-азная активность миозина в волокнах типа I остается неизменной. При значениях, превышающих рН 9, ситуация изменяется: АТФ-азная активность миозина в волокнах типа II остается стабильной, в то время как аналогичная активность в волокнах типа I снижается. Эти два отдельных подтипа типа II можно распознать путем преинкубации волокон при значениях рН, которые находятся в конце указанного диапазона: АТФ-азная активность миозина в волокнах типа Па инактивируется при рН 4,6-4,8, в то время как в волокнах типа IIб она не изменяется. Иногда путем преинкубации можно выявить и волокна типа IIв, но этот тип вряд ли стоит принимать во внимание, поскольку в мышцах человека он составляет менее 1 % всех волокон.
Волокна типа IIа являются красными клетками, в которых метаболические и физиологические характеристики находятся между крайними значениями других двух типов волокон. Они содержат высокоактивную миозиновую АТФ-азу, аналогичную волокнам типа IIб, однако характеризуются окислительной способностью, более близкой к волокнам типа I.
Результаты последних исследований показывают, что для большинства мышечных волокон их фактическая идентификация определяется одной и более изоформой миозина. Такая совместная экспрессия различных изоформ миозина создает предпосылки для расширения диапазона сократительных характеристик внутри определенного типа волокон (классифицируемых в соответствии с окраской гистологических образцов) и степени их частичного совпадения между типами волокон при определении их сократительных характеристик. В действительности мы продолжаем оперировать сократительными и биохимическими характеристиками, соответствующими двум крайним типам классификации, определяемым как волокна типов I и IIб.
С различиями в скорости сокращения и метаболического профиля основных типов мышечных волокон отмечается дифференциация и двигательных нейронов, иннервирующих эти волокна. Так, волокна типа I иннервируются нейронами, имеющими малый диаметр и характеризующимися низкой скоростью проведения потенциала действия, а также низким порогом активации. Волокна типа II иннервируются нейронами большего диаметра, которые отличаются относительно более высокой прочностью и более высоким порогом возбудимости. Различие в порогах возбудимости двигательных нейронов связано с типом мышечных волокон, которые они иннервируют, с их рекрутированием при мышечных нагрузках, что и определяет метаболический ответ на последние. При различных видах двигательной активности проявляется определенная иерархия включения в нее двигательных единиц, в зависимости от их размера, которая, в общих чертах, соответствует волокнам типов I и II. Это свидетельствует о том, что, при легких физических нагрузках, в наибольшей степени задействованы волокна типа I, при нагрузках средней мощности — волокна типов I и II, а при более напряженной мышечной деятельности — все типы волокон включаются в работу.
Все мышцы организма представляют собой смесь указанных выше трех типов волокон, хотя пропорциональное соотношение в каждой из них и в каждом из индивидуумов обнаруживает существенное различие.
Так, мышцы, отвечающие за поддержание позы тела, содержат высокий процент (обычно более 70 %) волокон типа I, функция которых состоит в поддержании пролонгированного, но относительно невысокого напряжения. Однако быстросокращающиеся волокна типа II преобладают в мышцах, выполняющих быстрые движения (например, в мышцах руки и глаза). Другие же мышцы, как, например, четырехглавая мышца бедра, имеют разное соотношение типов волокон. Их композиционный состав генетически детерминирован и не поддается значительным изменениям под влиянием тренировки. Следовательно, способность к достижению высоких спортивных результатов является в значительной степени врожденной (с учетом того, что генетический потенциал индивидуума реализуется при соответствующей методике тренировки и питания).
Исследование m. vastus lateralis у марафонцев высокой квалификации показало, что эта мышца. содержит больший процент (около 80 %) волокон типа I, тогда как у элитных спринтеров обнаружился более высокий процент (около 60 %) быстросокращающихся волокон типа II
Безусловно, такие исследования требуют применения методики пункционной биопсии, которая позволяет изъять около 1000 волокон в одной пробе. Относительно небольшое количество исследований по изучению распределения волокон в мышцах человека было проведено при вскрытии трупов. Региональная вариативность композиционного состава мышц проявляется незначительно, хотя и отмечается тенденция к тому, что в глубоколежащих слоях преобладают волокна типа I. Это подтверждается и данными, полученными с помощью достаточно надежного метода — пункционной биопсии. Исследования, проведенные на m. vastus lateralis у человека, свидетельствуют о том, что разница в показателях между пробами составляет не более 6 % (коэффициент вариации) по отношению к доминирующему типу волокон.
Типы мышечной активности. Скелетные мышцы могут проявлять три различных типа активности: изометрический, при котором длина мышцы остается постоянной; концентрический, когда мышца укорачивается; эксцентрический, при котором длина мышцы, находящейся в активном состоянии, увеличивается. Обычно подразумевается, что мышцы развивают силу при сокращении. Однако тщательные исследования, проведенные на изолированных мышцах, свидетельствуют о том, что проявление силы не сопровождается изменением объема мышцы. Для проявления силы мышцы стремятся сократиться (т. е. уменьшить длину саркомеров), что в результате может иметь три основных исхода. В случае концентрической активности мышца выполняет механическую работу и развивает при этом определенную мощность. Если мышца проявляет активность в условиях изометрического или эксцентрического сокращения, то мощность будет поглощаться. Такие физические упражнения, выполняемые как при одном из видов активности, так и в комбинации, способны вызвать нарушение гомеостаза. Наиболее важной комбинацией может быть цикл «удлинение-сокращение», в котором эксцентрической активности непосредственно предшествует концентрическая активность. Сохранение возможности проявления высокой мощности в начале эксцентрической фазы обеспечивается энергией, запасенной в мышце за счет ее эластичности. Во время последующей, генерирующей мощность, концентрической фазы вклад восстанавливающей эластической энергии препятствует развитию утомления по сравнению со случаем чисто концентрической активности.
Повторное выполнение высокомощностных эксцентрических действий может вызвать повреждение мышц и возникновение в них временных болезненных ощущений, которые обычно появляются через 6-12 ч после физической нагрузки и сохраняются несколько дней. Роль различных типов волокон в эксцентрической мышечной активности еще полностью не выяснена, хотя, скорее всего, в данном случае активируется небольшое количество волокон по сравнению с концентрическим сокращением. Имеется также несколько доказательств, что волокна типа II могут избирательно рекруитироваться во время эксцентрической активности мышц. Такая высокая нагрузка на относительно небольшое количество волокон может вызвать их локальные повреждения, связанные с воспалительным процессом и сопровождающимися отечностью и болевыми ощущениями. Доказательством того, что в мышцах действительно происходят повреждения, служит появление в крови высоких уровней внутримышечных ферментов в дни выполнения эксцентрических упражнений, а также гистологические доказательства разрушения саркомеров и Z-линий в работавших мышцах.
Пластичность скелетных мышц. Скелетная мышца является чрезвычайно пластичной тканью: она обладает значительной способностью адаптироваться к различным видам активности либо к бездействию. Адаптация может проявляться в изменении размеров мышцы, композиционного состава волокон, метаболической способности, плотности капилляризации.
Размер мышц и их функции с возрастом изменяются. Максимальной силы мышцы у мужчин и женщин достигают в возрасте между 20 и 30 годами. К 70 годам сила мышц снижается в среднем на 30 %. Уменьшение мышечной массы является ведущим фактором в этом процессе. Возможно также, что происходящее с возрастом снижение мышечной силы связано с уменьшением размеров волокон, в частности волокон типа II. Не исключено уменьшение при этом общего количества мышечных волокон, обусловленное утратой к старости двигательных нейронов. Иннервация мышечных волокон необходима для поддержания их существования (возможно, это связано с выработкой в нерве факторов роста), а денервация приводит к атрофии мышечных волокон и замещению их соединительной тканью.
Связанное со старением снижение мышечной массы может происходить как за счет самих возрастных изменений, происходящих в организме, так и в результате снижения двигательной активности либо одновременно за счет обоих факторов. Однако ясно, что и в старом организме мышцы еще сохраняют способность адаптироваться в ответ на силовую тренировку и что значительного улучшения физиологических, структурных и физических характеристик можно достичь без реализации напряженных тренировочных программ. В молодом возрасте частота, интенсивность и продолжительность упражнений являются решающими факторами, определяющими диапазон происходящих под влиянием тренировки адаптационных изменений